НЕЛИНЕЙНАЯ АКУСТИКА

УДК 534.222.2

СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ РЕШЕНИЯ КУБИЧНО-НЕЛИНЕЙНОГО УРАВНЕНИЯ ПРОСТОЙ ВОЛНЫ РИМАНА

© 2010 г. В.А. Гусев, Ю. Н. Маков

Московский государственный университет им. М.В. Ломоносова, физический факультет, кафедра акустики 119992 Москва, Ленинские горы Тел.: (495) 939-2943 E-mail: yuri_makov@mail.ru

Поступила в редакцию 7.04.10 г.

Для неявного решения кубично-нелинейного уравнения волны Римана (уравнения простых волн) получено точное явное его Фурье-представление, которое соответствует трансформации начального синусоидального профиля до образования разрыва и, далее, асимптотическому поведению этого же профиля на больших расстояниях. Полученные решения имеют такое же значение для задач с кубичной нелинейностью как хорошо известное решение Фубини и предельный вариант решения Фея в традиционной нелинейной акустике.

В данной заметке представлены аналоги хорошо известных с 30-х годов прошлого века в "классической" квадратично нелинейной акустике спектральных решений Фубини и Фея [1, 2] для случая уравнений нелинейной акустики с кубичной нелинейностью, которые все шире входят в практику использования в связи с решаемыми задачами твердотельной акустики.

Отметим, что процесс "освоения" уравнений с кубичной нелинейностью соответствует тому пути, по которому развивалась и "классическая" нелинейная акустика. Работа [3] положила начало исследованию кубично-нелинейных аналогов уравнения волны Римана и уравнения Бюргерса, что было продолжено в [4]. Уравнение типа Хохлова-Заболотской (и Хохлова-Заболотской-Кузнецова) с кубичной нелинейностью было введено в рассмотрение в работах [5, 6], затем его изучение в общетеоретическом плане продолжено в [4, 7] и сейчас оно все шире используется для решения конкретных задач твердотельной акустики [8, 9]. Однако до сих пор все внимание было обращено на теоретический анализ и получение аналитических соотношений для описания кубично-нелинейной трансформации профиля во временном представлении [3-7]. Какие-либо аналитические решения для спектрального представления этого процесса трансформации отсутствуют. Более того, необходимость иметь представление о соответствующих спектрах заставляет численно решать эту задачу даже для простейших кубично-нелинейных уравнений (см. [8]).

Представим некоторые аналитические результаты для отсутствующих спектральных представ-

лений, что является актуальным в свете вышесказанного.

Рассмотрим безразмерный вариант уравнения волн Римана (уравнения простых волн) с кубичной нелинейностью

$$\frac{\partial V}{\partial z} + V^2 \frac{\partial V}{\partial \theta} = 0.$$
(1)

Его записанное в неявном виде решение для начального синусоидального профиля плоской волны

$$V = \sin\left(\theta - V^2 z\right) \tag{2}$$

описывает трансформацию этого профиля в зависимости от координаты z; представление о характере изменения профиля дает рис. 1 (см. также [3]).

Вычислим спектральное представление решения (2). Из рис. 1 видно, что изменяемый профиль синусоиды описывается периодической функцией, не являющейся ни четной, ни нечетной (в отличие от нечетного вида трансформации в квадратично нелинейной среде). Поэтому соот-

Рис. 1. Вид трансформированного согласно решению (2) волнового профиля при $z \approx 1$ (расстояние образования разрыва) в сравнении с исходным синусоидальным профилем.

ветствующий тригонометрический ряд Фурье будет содержать и синусы и косинусы

$$V(z,\theta) = \sum_{n=1}^{\infty} (A_n(z)\sin n\theta + B_n(z)\cos n\theta)$$
(3)

при нулевом среднем значении функции. Кроме того, специальный вид функции V с ее отрицательной частью, повторяющей положительную часть со сдвигом на полпериода, обосновывает (см. дальнейшие вычисления) наличие в представлении (3) гармоник только с нечетными номерами.

Отметим, что спектральное представление решения (2) справедливо при тех значениях z, где функция (2) остается однозначной, а именно при z < 1.

Следующая последовательность равенств приводит к вычислению коэффициентов в Фурье представлении (3). Начальные преобразования аналогичны вычислению спектра в решении Фубини

$$A_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(\theta - zV^{2}) \sin(n\theta) d\theta =$$

$$= -\frac{1}{\pi n} \sin(\theta - zV^{2}) \cos(n\theta) |_{T} +$$

$$+ \frac{1}{\pi n} \int_{-\pi}^{\pi} \cos(n\xi + nz\sin^{2}\xi) d\sin\xi,$$

$$\xi = \theta - zV^{2}, V = \sin\xi, \theta = \xi + z\sin^{2}\xi.$$
 (4)

Учитывая нулевое значение первого слагаемого в правой части (4) при подстановке по периоду, для оставшегося интеграла используем следующее соотношение

$$A_{n} = \frac{1}{\pi n} \int_{-\pi}^{\pi} \cos(n\xi + nz\sin^{2}\xi) \cos\xi d\xi =$$
$$= \int_{-\pi}^{0} + \int_{0}^{\pi} = (5)$$
$$= \frac{2}{\pi n} \times \int_{0}^{\pi} \cos(n\xi + \frac{nz}{2}(1 - \cos 2\xi)) \cos\xi d\xi,$$

$$n = 2k + 1$$
.

Разбиение в (5) интеграла на сумму двух интегралов по полупериодам показывает следующее: если в первом из них ввести новую переменную интегрирования $\xi' = \xi + \pi$, то он будет равен второму, но с минусом при четных *n* и с плюсом при нечетных *n*. Таким образом, заключительное интегральное выражение в (5) является ненулевым только для нечетных номеров гармоник. При дальнейшем преобразовании выражения (5) последовательно используются формулы произведения тригонометрических функций, замена переменной интегрирования $y = 2\xi + \pi/2$ и формулы для тригонометрических функций от суммы/разности аргументов. В результате этого получается сумма следующих двух выражений, различающихся знаками "+" и "–" (т.е. в целом – сумма четырех слагаемых):

$$\frac{1}{2\pi n} \left[\cos\left(\frac{nz}{2} - \frac{(n\pm1)\pi}{4}\right)^{5\pi/2} \int_{\pi/2}^{5\pi/2} \cos\left(\frac{n\pm1}{2}y - \frac{nz}{2}\sin y\right) dy - \\ -\sin\left(\frac{nz}{2} - \frac{(n\pm1)\pi}{4}\right)^{5\pi/2} \int_{\pi/2}^{5\pi/2} \sin\left(\frac{n\pm1}{2}y - \frac{nz}{2}\sin y\right) dy \right],$$

$$n = 2k + 1.$$
(6)

Для интегралов, входящих в (6), с использованием новой переменной интегрирования $x = y - 2\pi$ легко установить равенство при следующих частичных интервалах интегрирования

$$\int_{\pi}^{5\pi/2} = \int_{-\pi}^{\pi/2} ,$$

которое позволяет во всех интегралах в (6) заменить интервал интегрирования на $[-\pi, +\pi]$. Отсюда следует равенство нулю последних интегралов в (6) в силу нечетности их подынтегрального выражения. Первые интегралы в (6) являются хорошо известным интегральным представлением функции Бесселя первого рода $J_m(x)$ [10, 11]. Полученные результаты для (6) с учетом начала (5) общей цепочки равенств дают явное выражение для коэффициентов ряда Фурье

$$A_{n}(z) = \frac{1}{n} \left(J_{\frac{n+1}{2}} \left(\frac{nz}{2} \right) \cos\left(\frac{nz}{2} - \frac{n+1}{4} \pi \right) + J_{\frac{n-1}{2}} \left(\frac{nz}{2} \right) \cos\left(\frac{nz}{2} - \frac{n-1}{4} \pi \right) \right),$$
(7)
$$n = 2k + 1.$$

Вычисление коэффициентов $B_n(z)$ в (3) проводится аналогично и дает следующий результат

$$B_{n}(z) = -\frac{1}{n} \left(J_{\frac{n+1}{2}} \left(\frac{nz}{2} \right) \sin\left(\frac{nz}{2} - \frac{n+1}{4} \pi \right) + J_{\frac{n-1}{2}} \left(\frac{nz}{2} \right) \sin\left(\frac{nz}{2} - \frac{n-1}{4} \pi \right) \right),$$
(8)
$$n = 2k + 1.$$

Относительно аргумента $\varphi_n = nz/2 - (n-1)\pi/4$ выражения для коэффициентов (7), (8) можно

АКУСТИЧЕСКИЙ ЖУРНАЛ том 56 № 5 2010

Рис. 2. Зависимости спектральных амплитуд (*сплошные линии*) решения (2) от расстояния *z* (до образования разрыва): (а) в сравнении с изменением основной гармоники, (б) без основной гармоники (более крупный масштаб). Пунктиром для сравнения показаны зависимости от *z* амплитуд гармоник с теми же номерами для спектрального решения Фубини (11).

~

представить в виде

$$A_n(z) = C_n(z)\cos(\varphi_n(z) - \delta_n(z)),$$

$$B_n(z) = -C_n(z)\sin(\varphi_n(z) - \delta_n(z)),$$
(9)

где

$$C_{n}(z) = \frac{1}{n} \sqrt{J_{\frac{n-1}{2}}^{2} \left(\frac{nz}{2}\right) + J_{\frac{n+1}{2}}^{2} \left(\frac{nz}{2}\right)},$$

$$\delta_{n}(z) = \operatorname{arctg} \frac{J_{(n+1)/2}(nz/2)}{J_{(n-1)/2}(nz/2)}.$$
(9')

Используя (9) в полном разложении в ряд Фурье (3) решения (2) кубично нелинейного уравнения волны Римана, можно перейти к последовательности амплитуд гармоник и соответствующим сдвигам фаз

$$V(z,\theta) = \sum_{n=1}^{\infty} (A_n(z)\sin n\theta + B_n(z)\cos n\theta) =$$

=
$$\sum_{n=1}^{\infty} C_n(z)\sin(n\theta - \psi_n(z)),$$
 (10)

где

$$\psi_n(z) = \phi_n(z) - \delta_n(z), \qquad (10')$$

Напомним, что в соотношениях (9)-(10) необходимо полагать n = 2k + 1.

Функции $C_n(z)$ и $\psi_n(z)$ характеризуют искомые спектральные составляющие решения (2) на расстояниях его однозначности (при z < 1).

2 АКУСТИЧЕСКИЙ ЖУРНАЛ том 56 № 5 2010

Наглядное представление о развитии с расстоянием *z* найденного спектра (10) волнового профиля (2) дает рис. 2 (в более мелком (а) и более крупном масштабе (б)), где для сравнения также показаны соответствующие зависимости (пунктир) амплитуд гармоник с теми же номерами для хорошо известного и упомянутого выше спектрального представления Фубини [1]

$$V = \sum_{n=1}^{\infty} \frac{2J_n(nz)}{nz} \sin(n\theta)$$
(11)

решения $V = \sin(\theta + zV)$, традиционного для квадратично нелинейной акустики уравнения волны Римана.

Изменение с расстоянием сдвига фаз гармоник – $\psi_n(z)$ (см. (10), (10')) иллюстрируется рисунком 3.

Отметим интересный "побочный" математический результат, связанный с тем, что трансформируемый при изменении *z* временной профиль (см. рис. 1) при $\theta = \pi$ всегда имеет нулевое значение функции *V*; через представление в виде ряда (3), (8) это приводит к следующему соотношению

$$\sum_{k=0}^{\infty} \frac{1}{2k+1} J_{k+1} \left(\frac{(2k+1)z}{2} \right) \cos\left(\frac{(2k+1)z}{2} - k\frac{\pi}{2} \right) =$$

$$= \sum_{k=0}^{\infty} \frac{1}{2k+1} J_k \left(\frac{(2k+1)z}{2} \right) \sin\left(\frac{(2k+1)z}{2} - k\frac{\pi}{2} \right).$$
(12)

Рис. 3. Изменение с расстоянием z начальной фазы (10') гармоник решения (2). Последовательный переход от самого нижнего к последующим графикам соответствует гармоникам с n = 1, 3, 5, ...

Рис. 4. Асимптотически самоподобный волновой профиль "трапециевидной пилы" [3] при *z* ≫ 1.

В равенстве (12) *п* явно представлено требуемыми нечетными значениями 2k + 1. Отметим нетривиальность равенства (12), заключающуюся в том, что, во-первых, из справочной литературы [11, 12] неизвестны явные соотношения между членами правого и левого ряда, а во-вторых, равенство (12) справедливо только при *z* < 1.3 (подтверждено численной проверкой), т.е. два функциональных ряда в (12) с однозначными членами представляют одну и ту же функцию только на определенном интервале значений *z*.

Возвращаясь к вопросу о спектральном представлении решения (2), отметим, что на достаточно больших расстояниях z, на которых полностью формируются ударные фронты (разрывы) волнового профиля, сам этот профиль приобретает определенный асимптотически самоподобный вид, который с ростом z сохраняется при уменьшающейся характерной "амплитуде", определяемой пиковым значением. Этот самоподобный профиль имеет вид "трапециевидной пилы" [3] (см. рис. 4) в отличие от "пилы с треугольными зубцами" в классической квадратично-нелинейной акустике. К тому же, "трапециевидная пила" с изменением расстояния изменяет свою начальную фазу (сдвигается вдоль временной оси).

В [3] найдено представление асимптотического по отношению к (2) при $z \ge 1$ профиля в следующем неявном виде

$$V_{\rm ac}^{\pm}(\theta, z) = \pm \left(\frac{b}{z}U(\theta)\right)^{1/2},$$
(13)

где $\theta = \tau - \tau_s(z)$, $\tau_s(z) = b \ln(z) - 1.73$, $b = \pi/(3 - \ln 4)$. Знак "+" соответствует первому полупериоду (например, при $-\pi < \theta < 0$), знак "—" — второму полупериоду при $0 < \theta < \pi$. Функция асимптотически самоподобного профиля $U(\theta)$ задается в следующем неявном виде

$$\frac{\theta - \theta_0}{b} = U - \ln(U/4) - 4, \qquad (14)$$

причем для первого полупериода $\theta_0 = 0, 1 < U < 4,$ для второго полупериода $\theta_0 = \pi, 1 < U < 4$ и т.д.; например, для второго полупериода с учетом явного выражения для *b* имеем

$$\frac{\theta}{b} = U - \ln U - 1, \ 0 < \theta < \pi.$$

В соответствии с полным решением (13) профиль первого полупериода отражается на втором полупериоде в отрицательную область относительно временной оси. Далее все периодически повторяется со сдвигом по временной оси.

Отметим, что найденную в [3] и приведенную здесь асимптотику можно получить как соответствующее аналитическое решение уравнения (1) при использовании анзаца самоподобного профиля [4].

Вычислим спектральное представление асимптотического самоподобного решения (13), (14)

$$V_{\rm ac}(\theta, z) = \sum_{n=-\infty}^{n=+\infty} c_n(z) \exp(in\theta), \qquad (15)$$

где

$$c_{n}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} V_{ac}(z,\theta) \exp(-in\theta) d\theta =$$

= $\frac{1}{\pi} \sqrt{\frac{b}{z}} \int_{-\pi}^{0} U^{1/2}(\theta) \exp(-in\theta) d\theta$ (15')
 $z \ge 1, \ n = 2k + 1.$

При записи последнего интеграла (15') учтен специальный вид симметрии асимптотического профиля (по аналогии с интегралом (5) и пояснением к нему).

АКУСТИЧЕСКИЙ ЖУРНАЛ том 56 № 5 2010

Обозначая $u = U^{1/2}$, запишем неявную функцию $u(\theta)$ согласно (14) при $\theta_0 = 0$ в виде

$$u = \exp\left(\frac{u^2}{2} - \frac{\theta}{2b} + a\right) = \exp(\xi), \qquad (16)$$

где
$$\xi = \frac{u^2}{2} - \frac{\theta}{2b} + a, a = \ln 2 - 2.$$

Используя (16) при вычислении последнего интеграла (15') по частям (аналогично (4)), получаем

$$c_{n}(z) = \frac{1}{\sqrt{z}} \left[\frac{i\sqrt{b}}{n\pi} \left(3 - \frac{0.5 \exp(-i2abn)}{(ibn)^{0.5 - ibn}} \times \left(\gamma(0.5 - ibn, 4ibn) - \gamma(0.5 - ibn, ibn) \right) \right) \right], \quad (17)$$
$$z \gg 1, \ n = 2k + 1,$$

где $\gamma(\lambda, \alpha) = \alpha^{\lambda} \int_{0}^{\infty} x^{\lambda-1} e^{-\alpha x} dx$ – неполная гамма-

функция (см. [10], 1.3.2.3), выражение для *b* см. в (13), выражение для *a* приведено в (16).

Машинное вычисление комплексных значений выражения в квадратных скобках в (17) при разных номерах n = 2k + 1 дает амплитуды гармоник через модули $C_n(z) \equiv |c_n(z)|$ (с той же зависимостью от расстояния, что и в (17)) асимптотического "самоподобного" профиля (13). Приведем результат для первых амплитуд гармоник:

$$C_{1} \approx 1.372/\sqrt{z}, C_{3} \approx 0.446/\sqrt{z},$$

$$C_{5} \approx 0.265/\sqrt{z}, C_{7} \approx 0.190/\sqrt{z},$$

$$C_{9} \approx 0.149/\sqrt{z}.$$
(18)

На рис. 5 показано сопоставление спектров (в виде спектральных амплитуд) трансформируемого с расстоянием решения (2) на начальной стадии (до образования разрыва, z < 1) в соответствии с выражением $C_n(z)$ (см. (9')) и на стадии (z > 3) асимптотически самоподобного профиля (13), (14) в виде "трапециевидной пилы", для которого спектральные амплитуды (18) находятся из (17).

Полезно провести сравнение амплитуд гармоник C_n (18) с аналогичными характеристиками C_i , получающимися из предельного "безвязкостного" спектрального решения Фея [2]

$$V = \frac{2}{1+z} \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n}$$

АКУСТИЧЕСКИЙ ЖУРНАЛ том 56 № 5 2010

Рис. 5. Общая картина зависимости спектральных амплитуд от расстояния z для волнового профиля (2) на начальном этапе его трансформации z < 1 (см. (9')) и на стадии образования "трапециевидной пилы" при z > 3 (см. (18)).

для асимптотического профиля "обычной пилы" в квадратично нелинейной акустике:

$$C_{1} = \frac{2}{1+z}, \quad C_{2} = \frac{1}{1+z}, \quad C_{3} = \frac{2}{3}\frac{1}{1+z}, \quad (19)$$
$$C_{4} = \frac{1}{21+z}, \quad C_{5} = \frac{2}{5}\frac{1}{1+z}.$$

Из (18) и (19) видно, что, начиная с любого "разумного" расстояния (например, z = 3), амплитуды гармоник (19) меньше соответствующих гармоник (18) и убывают более быстро с расстоянием.

Аналогично имеющемуся точному представлению упоминавшейся "пилы" в квадратично нелинейной акустике, полезно иметь хотя бы приближенное явное выражение для "пилы" (13) в кубично-нелинейном случае. Записывая (14) при $\theta_0 = 0$ относительно $u = U^{1/2}$ и разлагая в степенной ряд до квадратичного слагаемого функцию логарифма от u/4 при условии |u/4| < 1, получим квадратичную зависимость, которая позволяет определить явную функцию $u(\theta)$. Однако такое действие не дает нужные значения одновременно на обоих концах интервала, а именно $(\theta = -\pi, u = 1)$ и $(\theta = 0, u = 2)$. Для устранения этого несоответствия воспользуемся общим видом полученной квадратичной аппроксимации $\theta = \alpha u^2 + \beta u + \delta$, в которой неизвестные коэффициенты найдем из вышеприведенных краевых

Рис. 6. Графическое сравнение точного асимптотического волнового профиля, задаваемого неявным решением (13), (14) (сплошная линия), с его аппроксимацией в виде явного решения (21) (пунктирная линия).

значений с добавлением значения производной $\left(\frac{d\theta}{du}\right)_{1} = 0$. Это дает $\alpha = \pi$, $\beta = -2\pi$, $\delta = 0$,

$$u(\theta) \equiv U^{1/2}(\theta) = 1 + \sqrt{1 + \theta/\pi}, \qquad (20)$$
$$-\pi < \theta < 0,$$

а в соответствии с (13) получаем явное аппроксимирующее выражение для "трапециевидной пилы"

$$V_{\rm ac}^{\pm}(z,\theta) = \pm \sqrt{\frac{b}{z}} \left(1 + \sqrt{1 + \frac{\theta}{\pi}} \right),$$

-\pi < \theta < 0, (21)
0 < \theta < \pi.

Первый интервал соответствует верхнему, а второй — нижнему знаку в формуле (21). Точность полученной явной аппроксимации неявного решения (13), (14) характеризует рис. 6, где изображены графики функции $u(\theta) \equiv U^{1/2}(\theta)$ в соответствии с точным неявным выражением (14) (сплошная линия) и с явной аппроксимирующей функцией (21) (пунктирная линия).

В заключение отметим, что, несмотря на простой вид исходного уравнения (1) и его решения (2), неявная форма последнего приводит к сравнительно трудоемкой процедуре получения его спектрального представления. В работе получены аналитические выражения для спектральных характеристик простой волны в кубично-нелинейной среде как на стадии ее трансформации из синусоидальной формы до образования разрывов в профиле, так и асимптотически самоподобного профиля в виде "трапециевидной пилы". В развитие этих результатов полезно получение какихлибо спектральных представлений для кубичнонелинейной пучковой акустики с использованием, например, аналитических решений [7] в параксиальной области.

Авторы благодарят О.В. Руденко за полезные замечания при подготовке данного материала, а также В.А. Петрова за компьютерную реализацию некоторых вычислительных процедур.

Работа частично поддержана грантами РФФИ (№ 08-02-00811-а, 09-02-00925-а).

СПИСОК ЛИТЕРАТУРЫ

- Fubini E. Anomalie nella propagazione di ande acustiche de grande ampiezza // Alta Frequenza. 1935. V. 4. P. 530–581.
- 2. *Fay R.D.* Plane sound waves of finite amplitude // J. Acoust. Soc. Am. 1931. V. 3. P. 222–241.
- 3. *Lee-Bapty I.P., Crighton D.G.* Nonlinear wave motion governed by the modified Burgers equation // Phil. Trans. R. Soc. Lond. 1987. A 323. P. 173–209.
- 4. *Руденко О.В., Сапожников О.А.* Волновые пучки в кубично нелинейных средах без дисперсии. ЖЭТФ. 1994. Т. 106. № 2(8). С. 395–413.
- Rudenko O.V. Propagation of finite-amplitude beams // In book: Advances in Nonlinear Acoustics. Ed. H. Hobaek. World Scientific, 1993. P. 3–6.
- Руденко О.В., Сапожников О.А. Безынерционная самофокусировка недиспергирующих волн с широким спектром // Квантовая электроника. 1993. Т. 20. № 10. С. 1028–1030.
- Руденко О.В., Сухоруков А.А. Дифрагирующие пучки в кубично-нелинейных средах без дисперсии // Акуст. журн. 1995. Т. 41. № 5. С. 822–827.
- Zabolotskaya E.A., Hamilton M.F., Ilinskii Y.A., Meegan G.D. Modeling of nonlinear shear waves in soft solids // J. Acoust. Soc. Am. 2004. V. 116. № 5. P. 2807– 2813.
- 9. Wochner M.S., Hamilton M.F., Ilinskii Y.A., Zabolotskaya E.A. Cubic nonlinearity in shear wave beams with different polarizations // J. Acoust. Soc. Am. 2008. V. 123. № 5. P. 2488–2495.
- Прудников А.П., Бычков Ю.А., Маричев О.И. Интегралы и ряды. Элементарные функции. М.: Наука, 1981.
- Справочник по специальным функциям. Ред. Абрамовиц М., Стиган И. М.: Наука, 1979.
- Прудников А.П., Бычков Ю.А., Маричев О.И. Интегралы и ряды. Специальные функции. М.: Наука, 1983.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 56 № 5 2010