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The nonlinear wave equation and modified
Khokhlov–Zabolotskaya type equation for high
intensive acoustics wave beams propagating in
stratified atmosphere with inhomogeneous of sound
speed is set up. Some approaches to find analytical
solutions of this equation are developed. The
geometrical acoustics approximation and modified
Raley integral for this problem is suggested. The
asymptotical procedure is developed for describing
of wave profile near the axis of wave beam. This
method allows to take into account phase distortion
due to diffraction and nonlinear effects and improve
the nonlinear geometrical acoustics solution.

1 Introduction

The problem of intensive acoustic wave propaga-
tion in the stratified atmosphere is connected with
many important applications. Among them the in-
fluence of seismic processes under Earth surface on
the high layers of atmosphere and interaction and
energy exchange between different geospheres can
be mentioned. The main feature of this problem
is that the presence of gravity leads to equilibrium
density decreasing with increasing of height. As a
result the amplitude of acoustic velocity increases
exponentially with height, so the nonlinear effects
become important even for small initial amplitudes.

2 The main equation for the intensive
wave beam

The equation for intensive wave beam propagation
in the stratified atmosphere can be derived from
the hydrodynamic equation system:
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where u — particle velocity, ρ — medium density,
p — pressure, g — free fall acceleration, c — lo-
cal sound speed. The equation (3) is equation of
the adiabatic process s = const or dp/dt = 0, writ-
ten with taking into account change of equilibrium
state with height. The local sound speed depends
on temperature and in the case of intensive waves
includes the nonlinear terms due to nonlinear of
state equation (Poisson adiabat).
Assume that wave beam propagates vertically

upward along axis z. The equilibrium state is de-
fined by the following equations:

∂p0
∂z

= −ρ0g, p0 = ρ0RT. (4)

For the isothermal atmosphere one can ob-
tain the equilibrium density distribution ρ0 =
ρ00 exp(−z/H), where ρ00 — density near Earth
surface and H — the width of standard atmo-
sphere.
The following nonlinear equation for the vertical

component of particle velocity can be obtained
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Here the left side contains all linear terms and non-
linear term due to physical nonlinearity (ρ = ρ0+ρ′,
ρ′ is acoustic perturbation of density), the right side
contains only nonlinear terms Q, W , R of the com-
plicated form.
It is reasonable to simplify equation (5) to con-

struct some analytical solutions. The most appro-
priative approach is the method of slowly changing
wave profile. This method demands the wave pro-
file changes weak at scale of wave length λ. This
condition is satisfied in the problem under discus-
sion because the characteristic scale H � λ. In
accordance with this method we look for the solu-
tion of this form p′ = p(τ = t−z/c, µz,

√
µx,

√
µy),
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µ � 1 — small parameter. After simplifying one
can obtain
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At usual conditions the Brent frequency ωBW is
small and for high frequency acoustic waves one can
use the following equation
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(7)
Equations (5)–(7) can be used for description of in-
tensive acoustic beams in the stratified atmosphere.

3 The model nonlinear equation for the
acoustic field at the axis of the gaus-
sian wave beam

Now let us consider the linearized equation (7). For
isothermal atmosphere we obtain equation
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After introducing new variable u = w exp(−z/2H)
equation (8) has the form of linearized Khokhlov–
Zabolotskaya equation
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Let consider the gaussian wave beam u =
exp(−r2/a2)u0(t) as the initial condition. Then the
general solution for arbitrary function u0 is
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Solution at the beam axis
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Now one can write the expression for the Laplacian
at the axis
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So we obtain the exact equation for acoustic field
along the wave beam axis
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and the simplified model equation for field along
the axis
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Now let return to the nonlinear equation (7) and
use here expression (12). Then for the isothermal
atmosphere we can write the model nonlinear equa-
tion
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and simplified model nonlinear equation
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Equation (16) can be written in new variables
taking into account the exponential increasing with
heght

w(z, τ) = u(z, τ) exp(z/2H),

x1 =

∫ z

0

exp(z/2H)dz = 2H(exp(z/2H)− 1)

in following form
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The dimensionless variables can be introduced

znl = c20τ0/εu0, V = U/u0, x = x1/znl,

θ = τ/τ0, x0 = 2H/znl.

Equation (16) becomes
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Give for comparison the exact equation for strat-
ified atmosphere
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and the standard Khokhlov–Zabolotskaya equation
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It is obviously that for case N � 1 diffraction
effects prevail and for case N � 1 nonlinear effects
prevail. For case x0 → ∞ strafication effects can be
neglected. The most interesting is that stratifica-
tion leads to relatively decreasing diffraction effects
in comparison with nonlinear effects. At heights
x/x0 � 1 diffraction effects can be neglected. It
means at large heights the nonlinear geometrical
acoustics will give good description.

4 Equation for nonlinear diffraction
phase

The main goal is to construct analytical solutions
for diffracting nonlinear wave. This case corre-
sponds to small but finite N . If N � 1 the pertur-
bation method will give good results where the non-
linear terms are consider as small value. If N → 0
wave will be close to Riemann type wave.

Some additional information gives the following
approach. Let consider variable θ as dependent on
all other variables V = V (θ, x) → θ = S(V, x).
The equation for phase S is
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or, after integrating
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For case N = 0 one can obtain the solution
S = −xV that is the phase of plane nondiffrac-
tive Riemann wave. On the other hand the linear
problem correspond to neglecting term V in the left
side of (22). This solution S0 can be obtain from
linearized Khokhlov–Zabolotskaya equation.

5 Solution for nonlinear diffraction
phase

The idea of constructing analytical solution is as
follows. Let expand function S as a series S =
S0+ S̃, S̃ = S1+NS2 on small parameter N , where
S0 is the solution of linear equation. Solution S0

has the form S0 = Φ(V, x) + f(x), f(0) = 0. Func-
tion Φ(V, x) is connected with initial condition.
Function S̃ describes phase shift due to nonlinear
effects and interactions of nonlinear and diffractive

effects. Function S̃ satisfies to equation
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It is interesting that function f(x) from S0 doesn’t
influence on nonlinear phase. Only distortion of ini-
tial function Φ(V, x) can influence on this phase. It
is obviously that this part of full nonlinear phase S
is connected with change of wave amplitude. And
other part is connected with the “true phase”. Of
course there are also terms responsible for interac-
tion.
First, let expand S̃ as a series S̃ = S1 +NS2, so
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∂S2

∂x
=

1

1 + x/x0

(
∂S0

∂V
·
∫

V
∂S1

∂V
dV

+
∂S1

∂V
·
∫

V
∂S0

∂V
dV +

∂S1

∂V
·
∫

V
∂S1

∂V
dV

)
. (25)

For initial condition V (x = 0) = sin θ solution
S0 = arcsinV −Nx. Therefore
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=

1
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x2V 2

2
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3V 2 − 2√
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)
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The main contribution is given by diffraction-
nonlinear interaction and is quadratic at small x.
It is important that with diffraction taking into ac-
count phase of nonlinear wave contains not only the
first power of V but all other powers.
Another approach to obtain analytical solution is

the nonlinear geometrical acoustics. This method
leads to equation which can be solved exactly. But
nonlinear part of phase of wave in this approach
coincide with phase of plane Riemann wave. Using
the improved expression (24)–(26) for phase in the
nonlinear geometrical acoustics solution can give
more accurate solution for diffractive intensive wave
beam at its axis.
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