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The theory of selfrefraction of nonlinear acoustical

beams is developed based on some exact and ap-

proximate analytical equations and solutions. The

system of base equations in geometrical acoustics ap-

proximation is sequentially derived from Khokhlov–

Zabolotskaya equation for nonlinear focused acous-

tical beams. The generalized method of extended

characteristics allows to set up the simplified closed

equation for ray convergence on the beam axis for

the most interesting case of small diffraction, when

large amplitudes in the focal area are observed. The

exact solution is derived in particular case. For

the common case of wave parameters there are sug-

gested some analytical approximations and numer-

ical solution. The amplitude dependencies on lon-

gitudinal and transversal distances and other wave

parameters are obtained. It is shown that at the

axis of gaussian beam in the focal area the local

minimum of amplitude can be formed. Some ini-

tial transversal beamforms, such as gaussian, and

initial phase modulation as parabolic or sinusoidal

are analyzed.

1 Introduction

The problem of discontinuous focused acoustical
beam propagation and calculation their param-
eters near focal area is under consideration in
this paper. Discontinuous waves and waves with
shock fronts are special objects of nonlinear acous-
tics. They are the general asymptotic solution
at large distances for arbitrary initial wave pro-
file and have some special features. In partic-
ular the speed of shock front propagation de-
pends on its peak amplitude. This fact leads to
such effect as selfrefraction (or nonlinear refrac-
tion) of intensive acoustical beams. Let us con-
sider the bounded beam of discontinuous waves for
example gaussian beam. The shock front ampli-
tude and consequently its speed depends on the
transversal coordinate so the wave front will be dis-
torted and cause wave defocusing. Moreover the
propagation speed of all nonsymmetrical acousti-
cal pulses differs from the local sound speed and
consequently all these pulses are also influenced by
selfrefraction.

2 Model equations and previous results

The first self-consistent method describing the
beam propagation with selfrefraction taken into ac-
count was suggested in paper [1]. The system of
modified nonlinear geometrical acoustics approxi-
mation equations was written, where the new term
responsible for the selfrefraction was added in the
eikonal equation’s right hand by analogy with plane
waves:
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These equations are already written in dimension-
less variables, convenient to further calculations.
Here α = ∂ψ /∂r — ray inclination function, ψ —
eikonal, z and r — dimensionless longitudinal and
transversal coordinates, p — acoustical pressure,
A(z, r) — dimensionless beam amplitude, T =
τ −ψ/c0, τ = t− z/c0 — retarded time. There are
two dimensionless parameters: γ = F/xs defines
the relative contribution of focusing (F — focal
length) and nonlinearity (xs — nonlinear length),
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defines the selfrefraction “strength”. Here xdiff =
r20/λ, pint = ρc20/2ε, θ = r0/F , ε — nonlinearity
parameter, A0, r0 — amplitude and beam radius.
However these equations were not derived from

any more exact equations so the question about
boundaries of their applicability is still open. Be-
sides in paper [1] some suggestions such as paraxial
approximation were used and only numerical so-
lutions were obtained. The main result of [1] is
the empirically obtained from numerical calcula-
tions expression for the pressure limit in the focal
area plim = (1,3 − 1,7)pintθ

2, which depends only
on parameters of medium and beam geometry and
very weak on other parameters.
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Another approach based on numerical solutions
of more exact Khokhlov–Zabolotskaya equation was
developed in [2] to calculate the pressure limit. It
have been shown that the pressure limit changes
weakly for the wide interval of parameters and is in
accordance with results of the previous paper [1].
But some questions have not answered yet:

1. Could the simplified equation be derived more
correctly and for arbitrary transversal form of
beam?

2. Could some analytical estimations be obtained?

3. What is the main factor limiting the pressure in
the focus — diffraction or selfrefraction?

4. Could the improved nonlinear geometrical ap-
proximation be used to describe focal area of dis-
continuous waves instead the Khokhlov–Zabolots-
kaya equation?

This work is an attempt to give answers to these
questions.

3 Main equations for selfrefraction ef-

fect

First of all we proceed from the base equation of
intensive acoustical beam theory — Khokhlov–Za-
bolotskaya equation
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It can be written for τ = τ(p, z) as the function of
independent variables p and z [3]
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If we neglect diffraction (∆⊥τ → 0) and use the
“equal area” rule for the shock front area we derive
the following equation for shock front movement
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which is coincide in sense with Eq. (1). So Eq. (1)
is written in nondiffraction approximation and for
shock front. So there is the principal possibility to
calculate diffraction corrections. However we will
consider further only the nondiffraction model.
Now let introduce in Eq. (1)–(2) new transversal

coordinate ξ so called ray coordinate which phys-
ical meaning is the initial transversal coordinate
of any ray. Thus current transversal coordinate

r = r(ξ, z). This allows to write the base system of
equations describing arbitrary wave beam [4, 5]:
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The amplitude of initial N-wave with arbitrary
transversal form (p(z = 0) = R(r)p0(T ), p0(T ) =
−T for |T | < 1 and p0(T ) = 0 for |T | > 1) is defined
by expression
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So equations for ray trajectory r and ray conver-
gence rξ are
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The formal implicit solution for ray convergence at
small µ can be written
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Now one can conclude that selfrefraction 1) limits
the peak amplitude in the focal area, 2) moves the
maximum amplitude position along beam axis far
from geometrical focus.

4 Analytical solutions for pressure

along beam axis. Pressure limit

To obtain analytical solutions we make some sug-
gestions based on physical sense. It can be shown
that parameter µ, which describes the selfrefrac-
tion “strength”, is small for more interesting cases,
including relatively small Mach number, case of
strong focusing etc. Besides, large µ corresponds
to strong defocusing due to diffraction, nonlinear
absorption and selfrefraction so this situation looks
not very useful.
Now consider the classical case of gaussian

beam. Simple equation can be written for field
along the gaussian beam axis in the first order
approximation on µ (Q ≡ rξ(ξ = 0) = r(ξ = 0)):
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with conditions Q(z = 0) = 1, dQ/dz(z = 0) = −1.
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Figure 1: Ray convergence (a) and peak am-
plitude (b)

For qualitative estimation of the pressure limit
we consider the case of gamma tending to zero when
the exact solution can be obtained:
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before the turning point and z2 = 2z0−z1 after the
turning point. The turning point z0 is determined
by the condition z0 = z1 (Qmin). This solution is
shown on Fig. 1,a for parameters µ = 0,01 (curves
1, 2) and µ = 0,1 (curves 3, 4). There is also shown
comparison between first (curves 1, 3) and second
(curves 2, 4) order approximations on parameter µ.
One can see that corresponding curves are in a good
agreement with each other. At the Fig. 1,b the peak
amplitude for the same values of parameters are
shown. Main results are as follows. We take into
account only selfrefraction without any diffraction
and obtain the finite pressure limit. Maximum po-
sition moves beyond “linear” geometrical focus.
Solution (10) allows to find minimum value of ray

convergence Qmin = 2µ/(1 + 2µ) and consequently
the pressure limit (Amax = Q−1

min
) in focus:

Amax =
1 + 2µ

2µ
⇒ Ãmax

pintθ2
= 1 + 2µ (11)

(here Ãmax = A0Amax — physical (dimensional)
amplitude). This theoretical expression is in a good
accordance with empiric estimation from [1, 2].
And we should remember that expression (11) con-
cerns only special case.
For nonzero gamma the most effective method to

obtain analytical solution is the straight expansion
on small µ: Q = Q0+µQ1+µ

2Q2. The solution can
be obtained in common case as quadratures. The
comparison of this solution with numerical one is

Figure 2: Comparison of numerical and
asymptotic solutions

Figure 3: Peak amplitude for different γ

shown at Fig. 2 and one can see good agreement
between them. At Fig. 3 the peak pressure along
beam axis are shown for different γ. One can con-
clude that the pressure limit increases with gamma
increasing for small gamma and reaches saturation
for large gamma. Longitudinal focal area on the
contrary decreases with gamma increasing.

5 Transversal structure

The peak pressure along different rays ξ are shown
for small γ = 0,1 at Fig. 4 and γ = 1 at Fig. 5.
Note that the local minimum of the peak pressure
forms near beam axis for small gamma even for
initial gaussian beam. It can be obtained that focal
area defined by selfrefraction depends weakly on
parameter gamma. On the other hand focal area
defined by diffraction is γ/

√

1 + γ2. So for small
gamma diffraction is not significant and for large
gamma selfrefraction and diffraction works jointly.
The developed model allows to calculate and

other spatial-modulated beams, not only gaussian
beams. At Fig. 6 the peak amplitude for the beam
with periodic modulated wave front α0(ξ) = − sin ξ
are shown as example.
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Figure 4: Peak amplitude along different rays,
γ = 0,1

Figure 5: Peak amplitude along different rays,
γ = 1

Figure 6: Peak amplitude for periodic-
modulated beam

6 Conclusions

1. The correct derivation of the equation for the
shock front propagation is suggested so there is the
principal possibility to take into account diffraction
effects.

2. Theoretical expressions for the pressure limit are
obtained. The pressure limit does not change sig-
nificantly for wide interval of parameters.

3. At small gamma diffraction does not influence
significantly on the spatial structure of the wave
beam and is determined mainly by selfrefraction.
At large gamma diffraction can cause some correc-
tions to transversal structure.

4. The developed theory can be used for describ-
ing discontinuous waves with arbitrary initial wave
front and transversal form.

5. All these results allows to conclude that im-
proved nonlinear geometrical approximation is able
to describe propagation of discontinuous waves and
waves with shock fronts even in focal area, at least,
qualitatively.
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