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Abstract

Simplified nonlinear evolution equations describing nonsteady-state forced
vibrations in an acoustic resonator having one closed end and the other
end periodically oscillating are derived. An approach based on a nonlin-
ear functional equation is used. The nonlinear Q-factor and the nonlinear
frequency response of the resonator are calculated for steady-state oscil-
lations of both inviscid and dissipative media. The general expression for
the mean intensity of the acoustic wave in terms of the characteristic value
of a Mathieu function is derived. The process of development of a stand-
ing wave is described analytically on the base of exact nonlinear solutions
for different laws of periodic motion of the wall. For harmonic excita-
tion the wave profiles are described by Mathieu functions, and their mean
energy characteristics by the corresponding eigenvalues. The sawtooth-
shaped motion of the boundary leads to a similar process of evolution of
the profile, but the solution has a very simple form. Some possibilities to
enhance the Q-factor of a nonlinear system by suppression of nonlinear

energy losses are discussed.

PACS number : 43.25



I. INTRODUCTION

The resonance is known as one of the most interesting phenomena in
the physics of vibrations and waves. It manifests itself markedly, if the
dependence of the amplitude of a forced oscillation on frequency (i.e. the
frequency response) has a sharp maximum. In this case, the ratio of
the central frequency wy of the spectral line imaging the response to the
characteristic width of this line is large in magnitude. This ratio, known
as the Q-factor, can be used as a measure of the "quality” of a resonant
system. At large values of () the system can contain high density of
vibratonal energy, because the ratio of the steady-state forced oscillation
and the external driving force is equal to ).

For ) >> 1 the approach to the equilibrium state goes on very slowly,
because the characteristic relaxation time is about 3—0 The duration of
the increase of the vibration amplitude (or decrease, if the source is shut
off) contains a great number of periods which is of the order of Q.

The excitation of strong vibrations in a high-Q) system can lead to the
appearance of nonlinear effects, the best known example of which is the
destruction of the system. On the other hand, high-() devices are used
for the most precise measurements in different branches and applications.

This work is devoted to the analysis of the frequency response and
(Q-factor of a nonlinear acoustic resonator.

Standing waves are of great interest for nonlinear wave theory and
technologies [1]-[3]. Using high-Q) resonators, it is possible to accumulate
a considerable amount of acoustic energy and provide, in consequence,
conditions for clear manifestaition of nonlinear phenomena [4] even in
case of a weak power source. Extremely high @)-factor magnitudes, Q) ~

10%—10", were reached in mechanical resonators designed for the detection



of bursts of gravitational waves [5]. Very strong vibrations were excited in
gas-filled resonators of complicated shape, in particular conical or bulb-
shaped ones [6].

At small amplitudes of vibration, the ()-factor is limited by linear
absorption caused by dissipative properties of both the medium inside
the cavity of the resonator and its boundaries, as well as by radiation
losses essential for open resonators. All these types of absorption do not
depend on the amplitude. Therefore, for a resonator of given design, the
Q-factor is the constant suitable for estimation of its "quality”.

As the amplitude increases, nonlinear phenomena become important.
The progressive distortion of the wave profile often leads to formation of
shocks which are responsible for additional nonlinear losses. This non-
linear absorption depends on the ”strength” of the wave (namely, on its
amplitude, peak pressure, intensity etc.) and can be several orders higher
than the usual linear one [3]. Consequently, the Q- factor is now de-
termined not only by the design of the nonlinear resonator, but by the
strength of the internal acoustic field as well.

The nonlinear @.-factor was earlier evaluated by the rate of dying-
down of free standing waves between two rigid walls [7]. It was also
calculated for the forced steady-state vibration in this resonator excited
by an external force with the same spatial distribution as the fundamental
mode [8]. However, only wave profiles and spectra were studied in detail
for the most typical statement of the problem, in which one rigid wall of
the resonator is immovable, and the other wall oscillates periodically (see,
for example, [2], [9]-[11]. Such principal characteristics of this nonlinear
resonator as (Q-factor and frequency response have not been adequately

explored. Some new findings related to the ()-factor are published in ref.



[12]. More comprehensive results are given below.

II. SIMPLIFIED APPROACH AND BASIC NON-
LINEAR EQUATIONS

Evidently, in a linear one-dimensional system the standing wave can be

composed of two plane waves propagating in opposite directions:

O(w,t) = it = =) +pall+2) | (1)

here ® is potential of particle velocity @ = =V ®, and ¢ is sound velocity.
It seems that Chester [9] was first to use the representation (1) to describe
approximately the nonlinear field in the cavity of a resonator. This idea
was explained and applied to nonlinear standing waves between rigid im-
movable walls [7],[8], where the field is described as the sum (1) of two
Riemann or Burgers travelling waves. Fach of these waves can be dis-
torted significantly by nonlinear self-action, resulting into the formation
of a sawtooth-shaped profile from the initial harmonic one with no con-
tribution from the cross-interaction of two counterpropagating waves. In
other words, each wave is distorted by itself during the propagation, but
there is no energy exchange between them. Similar approaches have been
used later in many works (see, for example, [11], [14]). Waveguide modes
can also be described by a modification of this approach [15]; the non-
linear Brillouin modes were formed [15] by two strongly distorted waves
intersecting at equal angles to the axes of a waveguide.

The idea of “nonlinear superposition” was clearly explained in Ref.
[12]. In short, the successive approximation solution to any nonlinear
model governing the field of cross-secting waves contains both resonant

and non-resonant parts. After several periods of vibration the non-resonant
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waves become much weaker than the resonant ones, and cannot patici-
pate significantly in nonlinear energy exchange. Each of two cross-secting
(in particular, counterpropagating) waves generates its higher harmonics,
but the cross-interaction process can be neglected if the waves are periodic
in time. This conclusion is easily seen to be as valid for periodic waves
intersecting at any sufficiently large angles [15], not necessary equal to
180°, as for counterpropagating waves in 1D geometry.

After these comments, the approximate solution can be written as the

sum of two travelling Riemann waves (for an inviscid fluid):
u=u + uy = Fi(wl — kx + %wal) + Fy(wt + Kk + %W$F2), (2)
¢ ¢

where [, are auxiliary functions describing wave profiles, and ¢ is a
nonlinearity parameter.
The solution (2) must satisfy the boundary condition on the immovable

wall

u(z=10,t) =0 (3)
and the boundary condition on the vibrating boundary
u(z = L,t) = Asinwt. (4)

From (2) and (3) follows Fy = —F, = F. The unknown function F' must
be determined from the second boundary condition (4). This determina-

tion reduces (2) to the functional equation
F(wl — kL + SkLF) — F(wt + kL — “kLF) = Asinwt.  (5)
¢ c

The equation (5) is very complicated and cannot be solved exactly ana-
lytically. Nevertheless, it can be simplified for most interesting cases, if

the following three conditions are satisfied.



First, the length of the resonator must be small in comparison with

the shock formation length [3], [4]:

2
L << ————— 6
€| F | mar’ (6)
where |F|;qz1s the maximum amplitude of the function F.

Second, the frequency w of vibration of the right-hand boundary must

differ slightly from a resonant {frequency nwy:

w — Nwy

kL=mn+A, A=nx << 1, (7)

wo
where A is the discrepancy and wy = 7 is the frequency of the funda-
mental eigenmode n = 1.
Third, the energy influx during one period 2% from the vibrating bound-

ary to the resonator must be small in comparison with the accumulated

energy, in other words,

Q >> 1. (8)

The case of vicinity of the fundamental mode (n = 1) is now consid-
ered. Using the weak nonlinearity condition (6) and formulas (7) with
the smallness condition for A we replace the left-hand side of Eq. (5) by

two terms of its series expansion:

F(wt — 6L+ S6LF) — F(wl + kL — Sk LF)
& &

A)F A)F

SR LS S N G L

C C

WGF)[F’(wt . W) + F’(wt + Tr)] (9>

C

=Flwt—m—A+

~ [Flwt — ) — Flwt + )] — (A —

Because the right-hand side of Eq. (5) is a periodic function, and the
@-factor is presumed to be large (8), the unknown function F' must be

quasiperiodic. Therefore, its variation during one period can be replaced



in Eq. (9) by the derivative
Flwl—m) — Flwt 4+ m) & —2mp (10)

Here p << 1 is a small parameter, the physical meaning of which will be

clear later. Using (9) and (10) the equation (5) takes the form:

oF mel OF (wt 4 ) A
— = —— t. 11
Horm) (A = ) g S ()
Introducing new dimensionless variables and constants
F A l
U=—,M:—,f:wt+7r,T:w—, (12)
c c ™

one can rewrite the simplified evolution equation (11) as

oUu oUu ou M .
a—T%—Aa—E—WéUa—E—?smE. (13)

The equation (13) was derived earlier [17] to describe the sound excitation
by a moving laser beam (see also [18], [19]); it was named ”inhomogeneous
Riemann equation with discrepancy”. It should be emphasized that the
temporal variables ¢ and T" are "fast” and "slow” time respectively. From
Eq. (13) it follows that the small parameter y at the derivative on slow
time T' can play the role of any small number: A, M or U ~ M.

The evolution equation (13) can be generalized. The boundary = = L
can execute not only harmonic vibration but any periodic one. In this

case, the boundary condition (4) must be replaced by
(e = L.1) = Af(w). (14)

where f is an arbitrary function with the period 27. The boundary condi-
tion (14) leads to a simplified evolution equation, which differs from (13)

in its right-hand side, now equalling
M
—7f(§_7r)- (15)
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Next generalization of (13) takes into consideration the effective viscos-
ity, b # 0. In Ref. [20] an equation similar to (13), (15) was derived with

account for dissipation and finite displacement of the vibrating boundary:

oU  oU 02U M
U LAY ey - p2t M
o7 T2 MO - DHa =5

¢'(€), (16)
where ¢/(£) is a periodic function and the dimensionless number D, de-
termining the weak absorption of a wave passing through the length I of
a resonator, is defined as

L

D =
2¢3p

<< 1. (17)

However, the volume nonlinearity (e # 0) was not considered in Ref. [20].

The objective of the present work is the simultaneous consideration
of effects of dissipation and nonlinearity. Because all the phenomena
leading to the progressive distortion of the wave are supposed to be weak,
the corresponding terms in the evolution equation must be additive [3],
[16]. So, combining Eqs. (13), (15) and (16) we derive

ou ou ou 0*U M
a—T+A8_§_W6U8—§_D6§2 =5 fE=m). (18)

The equation (18) was named "inhomogeneous Burgers equation” [21]. Its
main propeties were studied in refs. [21], [22]in the context of stimulated

Brillouin scattering of light by nonlinear hypersonic waves.

III. STEADY-STATE VIBRATIONS

The establishment of a steady-state field in a resonator is a result of
competition between energy inflow from a vibrating source and its losses
caused by linear dissipation and nonlinear absorption. The equilibrium

state reached at T — oo can be described by the ordinary differential



equation, obtained by integration of Eq. (18) at % = 0. The simplest
case of periodic sawtooth-shaped motion of boundary is considered first.
It corresponds to the right-hand-side of (18) being equal to —(M/2)¢/x
inside the interval # < ¢ < m and periodically continued outside. For this
case the steady-state equation is

dU TE 9 _ oM 52 1
T -oy-avr="0Eh )

The constant C' in (19) is an arbitrary constant, which has an important

physical meaning. From (19) follows:

1 m
2= — | UdE=C7 (20)

:27'[' -

I

Thus the constant C? is the normalized intensity of one of two counter-

propagating waves. The mean value of U is assumed to be zero:

— 1 ™
Uz—/ Ude = 0. (21)
2T -
For negligible weak linear absorption, D — 0, the solution of the

quadratic equation corresponding to Eq. (19) is

A A M £ 1
e 2 24 (> ). 22
v me \/(7T6> O 26(7T2 3> (22)
For small Mach numbers, M << %, the linear solution can be derived
from one of the branches of the solution (22), namely from the ”-” branch
for A > 0 and from the "+” branch for A < 0:
M & 1 —  mM? M
=— sgnA(= — = == —— —. 2
U=—qapedlm—3) =V =158 <<% (23)

The inequality in the last member of (23) justifies the neglect of C? in the
derivation from (22) of the expression for U in the first equation of (23).
With increasing M, up to a certain limiting value M., which will be

determined later, the waveform undergoes progressive nonlinear distortion

(Fig. 1a), but is still described by one of the branches of the solution (22).

10



FIGURE 1a. TEXT

The solid curves 1, 2 and 3 in Fig. la are constructed for positive discrepancy
A = 0.1me, and the dashed curves for the same negative discrepancy. Increase in the
number of the curve corresponds to increase in the amplitude of boundary vibration:
10%(4£) = 1, 2.25 and 4.

In order to construct curves in Fig. la, the constant C? has been determined as a
solution of an algebraic eigenvalue problem. The condition (21) applied to (22) leads
to the following equation for C2:

M
2e

2A A M (2)+0r- 4
e \/(_)2 +024+ =+ (”)—Gfarsinh (24)
TE TE 3e (%)2 + 02— %

Q

B

Maximum value M = M, at which Eq. (24) has a real solution C' = A/(\/gre) 1s



determined by the condition

., M=—A=M,. (25)

2 T e w

At M = M, the bifurcation happens, and the steady-state waveform becomes
discontinuous. The shock front appears at each period of the wave, connecting the
two branches of solution (22).

Let the solution U at the moment &, lie on the ”minus” branch of (22). With
increasing time & > &g the solution must jump to the ”plus” branch; otherwise the
condition U = 0 cannot be satisfied. The moment & = £g of the jump corresponds to
the position of a shock of compression. However, the shock of rarefaction is prohibited
in usual media with quadratic nonlinearity, where the velocity of propagation increases
with increasing magnitude of the disturbance [24]. Therefore, both branches of the
solution (22) must have one common point in each period. If and only if the common
point exists, the transition can go on in the opposite direction, from the ”+” to the
”-” branch, without jump.

The common point exists if the expression under the square root in (22) is equal
to zero, or

C? = % _ (é 2

6e me’

(26)
For given eigenvalue (26) the solution (22) reduces to

_ M€ | (27)

g3 2¢

In order to determine the position of the shock in the wave profile it is necessary

to apply the condition U = 0 to the solution (27):

EsH
[ G g [ B[ yae. (29)

_x TE me 2em

From the condition (28) follows

2A [ 2
—\ar- (29)

Esp = —m{[1—

The Eq. (29) is valid for the condition M > M, (cf. (25)).

12



FIGURE 1b. TEXT

The solution (27), with account for Eq. (29) defining the position of the shock,
is shown in Fig. 1b, which is a continuation of Fig. la for greater Mach numbers.
With increasing M > M, the shock appearing initially at £ = 0 moves to the position
& = —m (for A > 0), which can be reached only at M — oo (cf. (29)). The solid curves
4,5 and 6 in Fig. 1b are constructed for 102(%) = 4, 9 and 49 correspondingly.

The dashed curves in Fig. 1b demonstrate a similar behaviour of the wave profile

at equal negative discrepancy A = —0.1me. In this case the shock appears at M = M,

in the point £ = 0 and moves to the point £ = m for M — oco.

13
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In Fig. 2 the nonlinear frequency response is given. The curves 1-3 are constructed

for different Mach numbers (%) = 0.25, 1 and 2.25 and demonstrate the dependence

of C'= VU? on the discrepancy (15) from the resonant frequency wg. Straight lines
1A
T /3 me

are separatrixes. Below these lines the curves in Fig. 2 are constructed by the solution

U2 (30)

(24) for wave profiles which do not contain the shocks. Exactly on the lines (30) the
Mach number M is equal to M, and the transition to the discontinuous solution takes
place. So, above the lines (30) another solution (Eq. (26)) was used for calculation of
the frequency response.

The frequency response is analysed not for the dependence of the amplitude on

frequency, as is customary for linear vibration, but for the root-mean-square (rms)

14



particle velocity \/ﬁ Because of the fact that the acoustic field U contains a great
number of harmonics the usual definition of frequency response is meaningless.
However, by analogy with the use of frequency response in the evaluation of the
Q-factor of a linear resonator, it is possible to evaluate the Q-factor of a nonlinear
resonator. As for the linear oscillator, the Q-factor can be defined in two ways: 1. as
the ratio between amplitudes of internal and external (driving) vibrations at resonance
(A =0); 2. as a ratio between the resonant frequency and the spectral width of the

frequency response. The first way leads to the calculation, using (12) and (26),

Quy = Y Cazn _ e [ 1 1)
)

V6eM

The second way uses the definition of A in (7) and the result (25):
1 2

Q= =221
NL_A_TI' GM,

which differs slightly from (31). The nonlinear Q-factor @, thus is proportional to

(32)

(eM)_% with a coefficient O(1) depending on the definition.

For the amplitude of the vibration of the boundary A =10 cm/s the nonlinear
evaluation (31) gives for gaseous media ) &~ 20. This value is much lower than the
value of the linear Q-factor, which is in this case:

r A3p _ cp
22D N v/ 2bwo L N V2rbwg'

depending on the effective viscosity b and the resonance frequency wo = 7. For air-

Q= (33)

filled resonators at typical frequencies about several kHz the linear evaluation (33)
gives Q ~ 10% — 10*.

The dependence ot the rms velocity \/ﬁ on the discrepancy A shown in Fig. 2
is not the only possible definition of nonlinear frequency response. For example, the
dependence U (A), where Uy is the positive peak value of U, is also important. This
response is shown in Fig. 3 by solid curves for the three values of % equal to 0.25,
1 and 2.25. The analytical expressions of the sections AB, BC, CD and DE of each

curve are different. Namely, U} equals to:

A A M

o —)24+C2—-— (AB

e \/(ﬂ'C) + 6e’ ( )’
A M A M
— ——2— BC
e 2€ me V 2¢’ ( )’



Al M
e + 2¢’ (CD)’

_H+\/(%)2+C2+%, (DE). (34)

mE e

Here the eigenvalue C? is determined by Eq. (24)
The straight lines 1 and 2 are the same separatrices as in Fig. 2. Note that Uy
is placed on the top of the shock front only for the section BC; for the other three

sections Uy belongs to smooth portions of the wave profile.

1 05 0 05 1 e

FIGURE 3. TEXT

The next important case corresponds to the ordinary differential equation like (19),

and with f = sin¢, i.e. harmonic vibration of the boundary:

dUu  me, , 9 M _

16



Wave profiles for this case were constructed in Ref. [12], but frequency response
was not considered there. To understand the behaviour at curves in Figs. 5 and 6, it

is necessary t give auxiliary formulas using the notations of the present article.

For negligible weak linear absorption, ) — 0, the solution of the quadratic equation
corresponding to Eq. (35) is

A A M
U:—i\/(—)2+02+—(’,0s€. (36)
e e e
For small Mach numbers, M << ﬁ—:, the linear solution is:
M M? M
= ————sgnA C*=U= — << —. 37
2|A|sgn cosé, RAZ << e (37)

With increasing M the waveform undergoes progressive nonlinear distortion (Fig.

4a), but is still described by one of the branches of the solution (36).

U
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FIGURE 4a. Temporal profile U of one of two counter-propagating waves forming the steady-state
vibration in a non-dissipative layer. The dimensionless amplitude M = é of the harmonic vibration
of the boundary is small enough and U does not contain shocks. (%) 102 equals to 5.6, 9.1 and

12.3 for the curves 1, 2 and 3 correspondingly.

The solid curves 1, 2 and 3 in Fig. 4a are constructed for positive discrepancy
A = 0.1me, and the dashed curves for the same negative discrepancy. Increase in the
number of the curve corresponds to increase in the amplitude of boundary vibration:
103(4) = 5.6,9.1 and 12.3.

In order to construct curves in Fig. 4a, the constant C? has been determined as a
solution of an algebraic eigenvalue problem. The condition (21) applied to (36) leads
to the following equation for C?:

A :z\/(é)urcurﬁg( me_ ) (38)

mE I mE e A M
(Fe)? + 0O+ 2

Here E() is the complete elliptic integral of the second kind [23].
The solution of Eq. (38) can be written in parametric form:

)
m me

where m is a parameter. The argument m of the function E(m) is defined in the region
0 <m <1 [23]. From (38) follows that the corresponding region for the discrepancy

A is given by
2 M A
i —§u<ooﬁM§£A2EM*. (40)
7r e TE 8e /

At M = M, the bifurcation happens, and the steady-state waveform becomes
discontinuous. The shock front appears at each period of the wave, connecting the
two branches of solution (36).

For a discontinuous wave

Cc? = %—(3)2. (41)

me me

For a given eigenvalue (41) the solution (36) reduces to

A 2M ¢
U=—=x1/—]cos=|.
g3 iga 2

(42)

The shock front position €spr, determined by the condition U = 0, satisfies the

equation
. EsH A [
)= — . 4
S50 = 5 5w (43)

18



From (43) we find that the condition |sin(§52H)| < 1 is equivalent with the condition

M > M, (cf. (40)).

FIGURE 4b. The same profiles as in Fig. 4a are constructed for greater magnitudes of M. The

profiles 3, 4 and 5 corresponding to (). 102 = 1.5, 3 and 10 contain shocks.

The solution (42), with account for Eq. (43) defining the position of the shock, is
shown in Fig. 4b, which is a continuation of Fig. 4a for greater Mach numbers. The
curve 3 in Fig. 4b, corresponding to M = M,, is the same as the curve 3 in Fig. 4a.
With increasing M > M, the shock appearing initially at £ = 7 (for A > 0) moves to
the position £ = 0, which can be reached only at M — oo (cf. (43)). The solid curves
4,5 and 6 in Fig. 4b are constructed for 102(%) = 1.5, 3 and 10 correspondingly.

The dashed curves in Fig. 4b demonstrate similar behaviour of the wave profile at

equal negative discrepancy A = —0.1me. In this case the shock appears at M = M, in

the point £ = —7 and moves to the point & = 0 for M — co.
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FIGURE 5. Nonlinear frequency response defined as rms normalized particle velocity. Curves 1-5

are constructed for different amplitudes of boundary vibration ((%) +10% = 1, 4, 9, 16 and 25).

In Fig. 5 the nonlinear frequency response is given. The curves 1-5 are constructed
for different Mach numbers 102(%) = 1,4, 9, 16 and 25, and demonstrate the depen-
dence of C'= VU? on the discrepancy ([15]) from the resonant frequency wg. Straight

lines

\/ﬁ:i %2—1(3) (44)

e’

are separatrixes. Below these lines the curves in Fig. 5 are constructed by the solution
(38) for wave profiles which do not contain the shocks. Exactly on the lines (44) the
Mach number M is equal to M, and the transition to the discontinuous solution takes
place. So, above the lines (44) another solution (Eq. (41)) was used for calculation of

the frequency response.

20



As earlier, the Q-factor can be defined in two ways (see (31) and (32) ). The first

definition leads to a formula analogous to (31):

c(\/ﬁ)Azo c % 1

= = — = 4
Qe A AV me Mme (45)
The second way gives the result
1 m 1
= — = y 46
ONL =X = 505 Vitne (46)

which differs slightly from (45).

The dependence Uy (A), where Uy is the positive peak value of U is shown in
Fig. 6 by solid curves for the two values of % equal to 0.25 and 0.09. The analytical
expressions of the sections AB, BC, CD and DE of each curve are different. Namely,

U4 equals to:

TE TE mE
A M w2 A
2 M2y
+v2 me 8 (71'6) ’ (BC)’
A M
—u+\/§ " (CD)a
me
A A M
_u+¢(_)2+c2+_, (DE). (47)
e e me

Here the eigenvalue C'? is determined by Eq. (39). The straight lines 1 and 2 are the
same separatrixes as in Fig. 5. The line 3 separating sections CD and DE is described

by
T A
Uy =(=—-1)—. 48
r=C-n2 (48)
Note that U, is placed on the top of the shock front only for the section BC; for the

other three sections Uy belongs to smooth portions of the wave profile.
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FIGURE 6. Nonlinear frequency response defined as positive peak particle velocity on the wave
profiles shown in Fig. 4. The boundary vibration amplitude % equals to 0.09 and 0.25.

The maximum value of U, is located not at A = 0, as a maximum in Fig. 5, but

at some positive discrepancy:

4 M A

(Ug)mae = V2(1 + F) pt ( Jmaz = \/Ti”z\/:

(49)
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IV. STEADY-STATE VIBRATION IN A DISSIPA-
TIVE MEDIUM AT HARMONIC EXCITATION

The problem considered in the preceding section is generalized here to a standing
wave in a resonator filled with an absorbing medium. Such a problem setting is more
complicated because derivatives of higher order appears in the wave equation due to
nonzero dissipation 1) # (0. The analytical solution can be written in terms of known
special functions only for harmonic motion of boundary. Fortunately, this case is most
interesting for applications. The mathematical approach used here is similar to that
developed by O.Rudenko [21] to describe high-power hypersonic wave generated at
Brillouin scattering. It was shown, that the high-frequency acoustic wave excited by

interacting laser beams is described by the Mathieu function

660(2,0) (50)

and its intensity is equal accurately to the characteristic value ag of the Mathieu
function (50). This basic result was derived for physical problem quite different from
the concerned one. Moreover, it was published 30 years ago as a brief letter to editors.
That is why it i1s necessary to describe here some peculiarities of calculation and
physical matter.

The standing waves in an absorbing layer (D # 0) must be studied on the base of

differential equation (35). Using the transformation
v="21w, (51)

the nonlinear equation (35) of the first order is reduced to the linear equation of the

second order:

W AdW_ e
de? D de =35

In particular, for zero discrepancy (A = 0), the equation (52) can be transformed into

)Z[C'2 + % cos &]W. (52)

the canonical form of the Mathieu equation [9]:

mweM

d*w TE 5 9
LASEToL I D2

7z TG

cos2z|lW =0, z = %: (53)

It is seen from Eq. (51) that the condition U = 0 calls for the periodicity of the

function W. Consequently, W can be written in terms of Mathieu functions [23]. The

23



solution satisfying the transition to the linear limit (M — 0) is

7reM). (54)

W = ceo(z,q = BTtk

The intensity C? of the wave is determined by the characteristic value ag(gq) of the

Mathieu function ceq (50)

77 = ¢ = —(2yag(g). (55)

e

For weak excitation, using the two first terms of a series expansion [23] of aq for ¢ << 1,

7q*
+1L (56)

o=,

ag X —

—_

one can calculate U2:
i M? B 7 (71'6)2M4 (57)
8§D2 2048 DS

The first term in (57) corresponds to the well-known linear result.

Using another asymptotic expansion for the characteristic value ag at ¢ >> 1 [23],

1 1
aoz—2q+2\/q_—1—3 (58)

oA

one can calculate the intensity for strong vibration of the boundary by means of (55):

el gl M LDy LDyt (59)

e meV me 4 M

Q:

me TE

An important characteristics of a resonator, its Q-factor, depends now on the absorp-

tion D:
1 /= 1 V2, 1, V2,0 3 D
=~ VIZx 1— L2d— —d?+ 224+ 4%, d= .
Q= VU —f -5 g+ g+ ?) (00

For D = 0 the result (60) rearranges into the (31) for a nondissipative medium.
For weak nonlinear distortion the quasi-linear Q-factor can be calculated on the

base of Eq. (57):
1 71

=5 T saE)

For M — 0 or for d — oo the equation (61) rearranges to the equation (33), valid in

(61)

linear theory.

For arbitrary values of dissipation D the Q-factor equals to

Q=0Qn~n1.¥(d=DQnr1), (62)
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where the nonlinear Q-factor ) is determined by Eq. (45) and ¥(d) is given by

W(d) = |/ ~dao(g = 57 (63)

Q

D

0 0.2 0.4
FIGURE 7 . Dependence of the Q-factor on the dimensionless dissipation D for 3 values of me M
equal to 0.01, 0.04 and 0.16.

The dependence of @ on D isshown in Fig. 7. The curves 1-3 are constructed by use
of Egs. (62) and (63) for 3 values of me M equal to 0.01, 0.04 and 0.16, correspondingly.
Increase in the dimensionless dissipation number D, defined in Eq. (17), leads to
decrease in the Q-factor. For small D-values the nonlinear absorption begins to play
an important role for the decreasing of ().

The analysis of the nonlinear frequency response calls for the solution to Eq. (52)

at nonzero discrepancy, A # 0. In this general case the nonlinear equation (35) can
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also be reduced to a Mathieu equation. Instead of (51) we put:

d A
= %Eln (wexp(ﬁéj)). (64)

Inserting (64) into (35) we obtain:

d? A M
7= (55) 107+ (2" +

pril = (QD — — cos &|w. (65)

It is still required that the mean value of U is zero. By use of (64) follows:

_ A 2D
U="—+

me me

[Inw(m) — Inw(—m)] = 0. (66)

Consequently, w is not a periodic function and cannot be expressed through Mathieu
functions [23]. Since the needed results cannot be found in ref. [23] as well as in
analogous tables, it is necessary to seek for an approximate solution to Eq. (35) or its
linearized version (65).

For small Mach numbers M the mean intensity equals to

i M? (me)>M* TD? — 5A? 67
T 8(AZ4 D?) " 512 (AZy D2)3(AZ44D?) (67)

In order to derive the result (67), the first four approximations were calculated in the
solution of Eq. (35) by the method of successive approximations. This solution is
described by very complicated formulas and is therefore not presented here.

For zero discrepancy (A = 0) the result (67) rearranges to form the result (57),
obtained from the theory of Mathieu functions.

In the opposite limiting case, i.e. ¢ >> 1, the mean intensity depending on M, A
and D for waves containing shocks, can be calculated by another approach. The wave
profile governed by Eq. (35) is found by the method of matched asymptotic expansions
[25], [26]. This profile is presented as a sum of an ”outer” solution, describing the
smooth section of the profile, and an ”inner” solution, describing the structure of a
shock front of finite width. Thereafter, the averaging over the period of the square of

this sum solution gives the intensity

_ M A D /M =2 A
U2 =[——(9))-V2—y/ — - —(=)2 (68)
e e me V me 8 “me

At resonance, A — 0, the equation (68) reduces to the result (59) of the theory of

Mathieu functions.
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The calculation of the asymptotic (¢ >> 1) solution described above is rather
complicated. It contains features important for nonlinear perturbation theory and will
be the subject of another work.

It follows from Eq. (68) that the nonlinear frequency response (solid curve 1 in
Fig. 8) decreases with account for weak dissipation (dashed curve 2). Analogously,
the linear frequency response (67), shown by the solid curve 3 in Fig. 8, decreases in

its main part, with account for weak nonlinearity.

FIGURE 8 . Decrease in the nonlinear frequency response (curve 1) caused by weak dissipation
(curve 2), and decrease in the linear frequency response (curve 3) with account for weak nonlinearity

(curve 4)

27



V. DEVELOPMENT OF STANDING WAVES

Nonsteady-state nonlinear vibrations in resonators have been studied much less than the stationary
ones [11], [12]. The evolution equation (18) offers the possibility to study the transient process for
any periodic motion of the boundary.

For saw-tooth like righthand side of equation (18) considered in the beginning of Section III the

non-steady state solution at (A = 0) has a vert simple form [12]
-——=, v <¢éL<m (69)

The ratio of the root mean square particle velocity of the standing wave to the "amplitude” of
the harmonic boundary vibration M tends, at ¢ — oo, to the value @Q 1, calculated for steady-state
vibration.

For a harmonic vibration of the boundary z = I the righthand side of Eq. (18) takes the

form (%) siné. For this case the substitution (51) transforms (18) into the linear partial differential

equation
aw ow 2w 1
— 4+ A— —D—— = ——gDcos¢W. (70)
T ¢ €2 2
By the substitution
1
W = exp(—ZaDT)y(z), z = %, (71)

where a is a constant, the ordinary differential equation for the function y(z) can be derived from
(70):
d?y A dy

E—QBE+(Q—2qcos2z)y=0. (72)

At zero discrepancy, A = 0, the equation (72) transforms into the canonical form of the differential
equation for Mathieu functions. This is the resonant case, which can be studied in detail. The
corresponding mathematical results were derived in [22] fo another physical problem, but these results
can be adopted for nonsteady-state vibrations of resonators.

For zero initial condition U(T = 0,€) the solution of Eq. (70) can be written as a series of even
Mathieu functions:

W =" o expleasn(a) DTlecan($, ), (73)

n=0
where a3, is given as

2
Jy eeo(5a)d
A2y = ﬁ (74)
fo ce3,,(3,9)dE
The steady-state solution resulting from (73) and (51) at T — oo,
2D d 1 & meM
= e ae meeo(5 o)

coincides with the result (54), (51) of section V. For ¢ >> 1 the solution (75) takes the form

_ oM i3 2 exp(—2./9¢)
U—\/?{Cosg—m}n 0<¢Sm, (76)

and for ¢ — oo it does not depend on the linear absorption (i.e. on ¢) at all:

(75)

2M
U=4/—cos %sgng, —r<EL . (77)

TE
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The solution (77) coincides with (27) for A = 0.

The increase in energy of resonator in the resonator can be studied on the base of solution (73)

for zero discrepancy and by numerical methods only. Instead, it is possible to develop the theory for

analytical description of the process of accumulation of acoustic energy. The approximate solution to

inhomogeneous Burgers Eq. (18) is used here with account for all principal parameters: nonlinearity,
absorption and discrepancy. This solution

U= % sin(¢ — arctan %) -
Mexp(—DT) neTU

it 4 Sl T
2v/D? 4+ A2 2v/D? 4+ A2

is derived by the method of transition to implicit variable used many times earlier (see, for example ,

. A . A
sin[¢ — AT — arctan ) + 7eTU — in(¢ — arctan B)] (78)

[13], [27], [28]). Calculations are rather complicated and therefore they are omitted here. As is shown
in Ref. [27], solutions of the type (78) are of good accuracy in two limiting cases: at highly expressed
nonlinear distortion of th wwave profile, but in the region where a shock is yet not formed, or at weak
nonlinearity, but at any 7'

Using the solution (78), U2 may be averaged over one period. The solution to this intricate
problem is

T ( weTU e—DT)

. 2
- M?2 1 /D21 A2
2 [1 —2e=PT___ 2V D744

cos AT) + e_QDT] . (79)

= _8(D2+ A2 (2 weTU e_DT)

\/D2+A2
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FIGURE 9 . TEXT HERE
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One can easily check the validity of this result at small values of M as the equation (79) for the
acoustic energy in the cavity of the resonator turns into the corresponding linear solution.
In conclusion, the nonsteady-state solutions to Eq. (18) are given here for weakly expressed

nonlinear effects. Expand the periodic righthand side of Eq. (18) in a Fourier series:

_%f(g—rr): %Z(ancosng-}-ﬁnsinng). (80)

n=1

The corresponding solution to Fq. (18) with the nonlinear term neglected equals to:

o0
U= % Z Cnlsin(né — én) — exp(=n>DT)sin(né — nAT — ¢,)], (81)
n=1
where
2 2
SN
n\ A2 $n2D2
ABn —nDap,

¢n = arctan (82)

Aay, +nDg, "
For example, at harmonic excitation (a, = 0, $1 = 1 and 3, = 0 for n # 1), the standing wave has
the same shape as the fundamental mode of (80):
W (z,t M
u (=) = - sin kz[cos(wt — ¢1)

c ‘/D2+A2

—exp(—DT) cos(wt — ¢1 — AT)]. (83)

Using the linear solution (83), the nonlinear correction term is calculated by the successive approxi-

mation method:

w(?) (z,t) e  M? R 2
. = = D2 A0 sin 2kx Z D (). (84)
m=1

Here

@1 = [(4D)? + (24)°]Z[sin(2n = $3)
—exp(—4DT)sin(2n — 2AT — qS%)
&y = —2[(3D) + (3A)2]~ Z[exp(=DT)sin(2 + AT — ¢1)
— exp(—4DT)sin(2n — 2AT — ¢1)]
&5 = [(2D)? + (44)2]73 [exp(—2DT) sin(2n + 2AT — )
— exp(—4DT)sin(2n — 2AT — ¢2)], (85)
where 7 = wt — ¢1. Evidently, the second approximation (84) corresponds to the second mode excited

by nonlinear transfer from the fundamental mode.
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The simple analytical expressions (83) and (84) offer a clear view of how the process of etablish-

ment of modes goes on at any dissipation D and discrepancy A. The increase in amplitudes, as well

and second harmonics at small M

as the evolution of spectral lines (or "instantaneous” frequency response) can be analysed for the first
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VII. CONCLUSIONS

In order to increase the intensity of a standing wave, one has to enhance the Q-factor of the nonlinear
resonator. As was shown above (cf. (31) and (32)), the limiting magnitude of Q is determined by
nonlinear absorption caused by the formation of steep shock fronts.

Different methods have been suggested to suppress the proccess of shock formation. Zarembo
et al. [29] suggest a resonator, of which one boundary has a frequency-dependent impedance; each
reflection from this boundary introduces phase shifts between different harmonics distroying the front.
Lawrenson et al. [6], Ladbury [30] and Ilinskii et al. [31] have realized the idea of controlling
the waveform and phase shifts between harmonics using resonators of complex shape. Rudenko
[32] suggested the method of controlling nonlinear energy flows between harmonics by introducing
selective absorbers, which can be used, in particular, to enhance the Q-factor by suppressing the
"key” frequencies [33]. This method was realized experimentally [34], but its possibilities are being
studied up to now [35],[36].

Quite another approach to enhance Q with no changes in the design of the resonator was suggested
in ref. [37]. It was shown that the unfavourable effects of nonlinearity due to the movable boundary
can be suppressed if the boundary executes a vibration of special form. More specifically, in order
to provide harmonic vibration in the cavity, the resonator must be excited by a periodic sequence of
short ”jerks” of its boundary.

If the usual linear Q-factor of a resonator is high enough, the significant acoustic energy can be
accumulated in the cavity even if the source of the external pump of energy is weak. High-intensity
vibration can easily be generated and nonlinear phenomena come into play. In particular, @ falls
down, and therefore, even strong increase in pump (energy inflow) leads to weak amplification of
the standing wave. Definitions of frequency response by the relative rms of the acoustic field or by
the maximum magnitude are given, suitable for different applications. Resonant curves illustrating
nonlinear frequency response are constructed. The dependence of ) on the intensity of excitation
and on linear properties are studied. Both wave profiles and energy characteristics for steady-state
vibration and its development are analysed. Different possibilities to enhance Q and the energy of
acoustic vibration are discussed.

To analyse these phenomena, the analytic approach to high-intensity standing waves is used, based
on nonlinear functional equations. The problem is radically simplified by separation of resonant and
non-resonant nonlinear interactions, by introduction of small parameters and different temporal scales,

and by reducing functional equations to differential ones.
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