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Abstract—Solution of the problem on an impedance wedge is studied by the Wiener—Hopf method. The range
of applicability of the solution is extended to the wedge angles exceeding 1. A procedure is proposed for solving
the problem in the case of the wedge angle being equal to n/m.

INTRODUCTION

The problem on the diffraction of a plane acoustic
wave by a wedge with impedance boundary conditions
was solved by G.D. Malyuzhinets [1, 2]. The solution
was obtained by using functional equations in the Som-
merfeld transform. Later, a detailed theory of such
equations was developed [3-5], which allowed one to
solve inhomogeneous equations, i.e., to take into
account the external forces.

It should be noted that the Malyuzhinets theory of
functional equations is fairly complicated. It is based
on special kinds of functions introduced by Malyuzhi-
nets and determined by their integral representation or
in the form of an infinite product. Because of the tech-
nical difficulties arising in the practical application of
this theory, the possibilities of putting it into practice
are limited. However, today, the ideas put forward by
Malyuzhinets have received further development in a
number of publications [6-8].

This paper presents the development of another
approach to the problems of diffraction in wedge-shaped
regions [9, 10]. The approach is based on the derivation of
functional equations related to those proposed by Maly-
uzhinets. However, these equations can be solved by
applying the Wiener—-Hopf method. It should be noted that
similar equations were derived earlier by Gautesen [11].

The Wiener—Hopf method is widely used in radio-
wave physics, and its theory 1s sufficiently complete [12].
On the other hand, functional equations sirmilar to those
studied below can be easily derived for any two-dimen-
sional region with a piecewise linear boundary. These two
facts should facilitate the solution of two-dimensional
problems concemed with the diffraction and propagation
of waves. Specifically, the above-mentioned approach
made it possible to describe the field excitation in a two-
dimensional region represented by an equilateral triangie
with impedance boundary cenditions [13].

This paper develops the results obtained in paper [9]
in two respects. First, the derivation of the functional
equation and the application of the factorization
method are considered for a wedge of angle 8 greater

than 7. (The results obtained in [9] refer only to 6 < 1.}
In this case, the same functional equation is valid, and
the region of the a priori analyticity of the sought-after
function is extended (from the half-band 0 < Reg < =,
Im@ > 0 to the half-band 0 < Retp < 9, Imo > 0), although
it is possible that, in the extended region, the sought-after
function has a pole corresponding to the Brewster angle of
the boundaries. The extension of the region of analyticity
of the unknown functions is necessary for a successful
application of the Wiener-Hopf method.

Second, the Wiener—-Hopf method is used for calcu-
lating the wave field formed in a wedge of angle mt/m.
The conventional procedure of applying the Wiener—
Hopf method to a functional equation includes two
basic steps. At the first step, a multiplicative factoriza-
tion of the coefficients involved in the equation is per-
formed. In our case, this step leads to the appearance of
Malyuzhinets functions degenerating into combina-
tions of elementary functions at rational wedge angles.
At the second step, the right-hand member of the trans-
formed equation is expanded into the sum of functions
that are analytical in the complementary regions.
Below, it is shown that, at the wedge angles equal to
m/m, the initial functional equation can be transformed
by the reflection method in such a way that it will
require no multiplicative factorization {and, hence, no
Malyuzhinets functions will appear). In this case, the
unknown function is expressed in the form of a contour
integral different from that obtained before [9].

It should be noted that the relation of the Malyuzhi-
nets function to the reflection coefficient characterizing
the plane wave reflection from an impedance plane was
mentioned in Malyuzhinets’ dissertation as well as in
some more recent publications (e.g., [14]).

STATEMENT OF THE PROBLEM,
DERIVATION OF FUNCTIONAL EQUATIONS,
AND SOLUTION IN THE CASE 8 < &t

In this section, we describe the statement of the
problem and briefly review the main results obtained in
paper [9].
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We consider an angular regton (a wedge) filled with
liquid or gas. Let the wedge angle be 8 < t. We assume
that the Helmholtz equation holds in this region for
some function u(x, ¥):

Au+k§u = 0. (1)

The consideration will be performed (where neces-
sary) in polar coordinates (r, o). We select the time
dependence in the form . A wave propagating along

—ikyx

the x axis in the positive direction has the form e
We assume that nonlinear impedance boundary condi-
tions are fulfilled at the wedge boundaries:

u_

on

where # is the inner normal to the boundary and sinf is
the constant related to the Brewster angle of the surface
(ReP € (0, m/2]). The functions P, ((r) represent the
external forces applied to the faces of the wedge (the
subscript indicates the face number).

We seek the wave field formed by the sources
located at the wedge boundary near the tip of the
wedge. We impose the condition at infinity and the
Meixner conditions at the tip (these conditions imply
the absence of energy sources near the tip of the
wedge).

Let us repeat the main statements of paper [9] that
will allow us to solve the above-stated problem.

Applying the Green formula to the angular region II
and selecting an auxiliary solution in the form of a
plane wave propagating into the bulk of the wedge, we
obtain the functional equation

(sinP + sin@) (@) + (sinP + sin(0 — @)}it,(60 - @)
= do(g) + D16 -0, )

iukgsinB = @y (r), (2)

where

oo

() = Iu(r, Me

0

~ikyrcosg

dr,

oo

i (9) = [u(r, O)e

0

—ikgroosg

dr, 4)

—ik,reosQ

&0 1(9) = El(-).l‘(bg‘,(r)e dr.
1]

Equation (3} is determined at 0 < ¢ < 6, but it can be
shown that this equation holds at real ¢ within the inter-
val 8 — 1t < @ < ® and can be analytically extended
beyond this interval.

According to formulas (4), the functions &, , (¢) are
regular in the half-band 0 < Reg < =, Im¢ > 0 (the
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domain of the a priori analyticity). Besides, the follow-
ing identity is evident:

iy (@) = ity (). (5)

In addition, by virtue of the conditions fulfilled at
the tip, the function #&, (@) decreases at infinity as
cos~'@ in the half-band 0 < Re@ < 7w, Im¢ > 0. The
above-listed conditions are important for the solution
of the problem under study. The symmetry condition is
in fact an additional functional equation expressing the
conditions of the Sommerfeld radiation. The analyticity
of the functions within the half-band allows us to elim-
inate the unnecessary poles (each pole is related to an
arriving plane wave). The condition of the decrease at
infinity ensures the uniqueness of the solution and the
fulfillment of the Meixner conditions at the tip.

The function
A(p) = sinP + sineo,

representing the coefficient involved in equation (3) can be
factorized at any given 0 < B < & in the following way:

Al9) = A(@)/A"(9), (6)
where

1
Won(@+B-1/2~0)Fe.(p-B+n/2-8)

Alg) =

AT(@) = (sinB + sin@)A"(9).
Here and below, Wy,(z) is the Malyuzhinets function.

For the functions A~(g) and A*(¢p), the following
identities are true:

AT(9) = AT(-p), A'(9)=A"(20-9). (D

In addition, the functions A~(¢) and A*(¢) have no
zeros and no poles in the regions 0 <Re¢@ < 0, Im¢ >0
and 0 < Re® < 8, Im@ < 0, respectively. Then, equation
(3) takes the form

AT(8-9)A(9)(9) + A(8 - 9IAT ()it (~¢) ®
= AT(8-9)AT(¢)(Do(p) + D1 (0 -9)),

where the two terms on the left-hand side have no sin-
gularities in the half-bands 0 < Rep < 6, Im¢ > 0 and
0 < Regp < 8, Ime < 0, respectively. These regions are
subdomains of the domains of the a priori analyticity of
the unknown functions. The first term is a function
symmetric about the center @ = 0, and the second term
is a function symmetric about @ = 8. Both terms on the
left-hand side decrease at infinity.
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Fig. L. Integration paths y and I" for 6 = /5.

s

)

Fig. 2. Obtuse wedge.

The above-mentioned properties of the functions
allow us to solve equation (8), In the region 0 < Reg < 6,
Ime > 0, the solution can be presented in the form
I S
A(@AT(8-9)
s L Lo
[A@A 0 0)(bu(e) + $:0 - 9)] Sm[r_:g ) do
28kytcos(n@'/0) — cos(np/8)] e ’

do(9) =

The path of integration 7y is shown in Fig. 1.

Let us consider formula (9). Suppose that we need
to represent a known function F{@) in the form of a sum

F(o) = f () + f {9,

so that f*(¢) has no singularities in the half-band ¢ <
Re@ < @, Im¢ < 0, and £ (@) has no singularities in the
half-band 0 < Re@ < ©, Imo > 0, and the following
equalities are satisfied:

(10

o) = £=9), (@) = f(20-09).
The functions f(¢) and (@) are determined as

(iH

F(¢')sin(ng/0©)dy

cos(nQ'/0) - cos(np/O) 12

£ = 55

r
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at0<Rep <8, Ime=>0, and

1 J‘ F(@')sin(ng'/0)dy’
20 cos(n@'/O) — cos(nY/O)
r
at 0 < Rep < O, Imop < 0. Conditions (10) and (f1)
allow the determination of f{p) and f(¢@) at every ¢.
The integration path I consists of the paths (0 + i, £3),
{©, 0), and (0, —is=).

Formulas (12) can be derived in the following way.
Let us introduce the variable & = cos(ng/©). In terms of
this variable, the integration path I" passes into the real
axis o), and the classical problem of expanding a given
function into a sum of functions analytical in the upper
and lower half-planes is to be solved.

Evidently, the unknown functions are determined
correct to an arbitrary integral function, but, because
the conditions of the decrease at infinity are imposed on
the functions f* and f-, the ambiguity is eliminated.

o) =

CASEfO>nm

The case of 8 > & should be considered separately.
Below, it will be demonstrated that, in this case, the
same functional equations are satisfied, but the limita-
tions imposed on the analyticity of the unknown func-
tions are somewhat different. This difference is related
to the fact that the application of the Wiener—Hopf
method requires the functions f; , (¢) to be analytical
in the regicn 0 < Re@ < 8, Img > 0, which, in the case
under study, is no subdomain of the demain of the a pri-
ori analyticity.

We divide the angle 8 by an imaginary straight line
into two parts, so that each part is less than © (Fig. 2).
We assume that this line makes an angle y with one arm
of the angle. We also preset the values of the variable
u{l) and its normal derivative at this line (the normal
along which we perform the differentiation is shown in
Fig. 2).

By applying the second Green formatla to each of
the two angular regions, we obtain two equations:

(sinf + sin@)itg(@) + (¥ — @)

) N (13)
+sin(y -0} (W - @) = Co(9),
(sinB + sin(B-eNA,(B-@)-3(y-9) (14)
—sin(y - @) (w-9) = ®i1(6-9),
where
() = Ju(r, \y)e_iknrmwdr,
o
n _ Lmau(r’ W) —ikgreos@
() = i S5 e dr.
0
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Equations (13) and (14) are determined within the
wtervals 0 <@ <yand y< ¢ <6, respectively. By an
analytical extension, we can make both equations to be
determined on a common Riemannian surface. Com-
bining equations (13) and (14), we obtain equation (3).

We note that the functions (¢) and 3 () are ana-
lytical within the half-band 0 < Reg < =, Ime¢ > 0 and
symmetric about the point ¢ = 0. Taking this fact into
account and using equations (13) and (14), we conclude

that the function &, (@) is analytical in the half-band 0 <

Re@ <y, Img < 0, while the function #, () is analyt-

ical in the half-band 0 < Re@ < 6 -, Imo < 0. Here,
we explicitly allow for the fact that the function sin B+
sin@ has no zeros in the aforementioned regions.

Now, we consider equation (3). From this equation,
it follows that the functions &, , (¢) are analytical in the
half-band 7 <Re¢ < 8, Im¢ > 0 except, maybe, for the
simple poles at the points where sinf + sin@ = 0. Thus,
in the half-band 0 < Re@ < 0, Im@ > 0, the functions
dg, 1 (@) can have only simple poles corresponding to
the zero values of the function A(p). A more detailed
analysis shows that, for § having an imaginary compo-
nent, the functions &, , (¢) can be considered as analyt-
ical over the integration path 7.

We note that the function A~() has a simple zero at
the point where A{(¢) = 0. Hence, the terms standing on
the left-hand side of equation (8) satisfy all conditions
specified in the previous section. As a result, the solu-
tion to this equation will be similar to solution (9).

APPLICATION OF THE REFLECTION METHOD
TO THE FUNCTIONAL EQUATION
IN THE CASE OF THE WEDGE ANGLE
BEING A FRACTION OF &

The procedure of applying the reflection method to
functional equations of type (3) consists in the sequen-
tial elimination of the unknown functions with the
arguments corresponding to the rays reflected from the
arms of the angle. In the case of wedge angles equal to
Tt/m, such procedure leads to qualitative changes in the
properties of the initial equation.

We write functional equation (3) several times
(namely, n times) with the sequential replacement of
the argument of the unknown function by the opposite
argument:

A@iy(0) + AB - 9)1,(8 - 9) = Do(g) + Di(B - ),
A(28 - )2y (20 - 9) + A(9 - 0)i, (¢ - 8)
= &o(20- )+ di(p-8),
A(9-208)ig(@ —20) + A(38 - ¢)2,(30 - ¢)
= By(~20+¢) + D,(360- @),
Vol. 44  No. 5

ACOUSTICAL PHYSICS 1998

595

A48 - 9)i1o(40 — @) + A(9 - 30)&, (¢ — 38)
= (46 - ¢) + &1 (p-30),

Using the symmetry property (5), we exclude the
variable &, (@ — 8) from the first two equations and

obtain an equation relating 7, (@) and #@, (@ —26). From
this equation, we eliminate ity (@ — 20) by using the
third equation, which operation results in an equation
relating &, (¢) and &, (¢ — 30), and so on.

As a result, we obtain the equation

-1

(@) [ TA@ - k8) + (=1)"* 'y, (0 - @)

k=0

n n-1
X HA(kG -@) = z {(—1)1(&%(1)@ -Jj0)
k=1

j=0

(15)

+ D1y ((+ 1)0-¢))

n-1
I A<k9~cp)},

k=j+1

i
x [TAto - 48)

k=1

where v(n) = 0 for the even 1, and v(n) = 1 for the odd n.
In formula (15), it is assumed that, if the lower limit in
the product exceeds the upper one, the product will be
equal to unity.

Let the wedge angle be

6 = g (16)

We selectn =m— |,
Using the evident property of the coefficient

A(9) = A(n~¢)

and performing simple calculations, we represent (15)
in the form:

K(9)a(9) + (-1)""" K (n8 - ¢)it, (10 — @)
n—1
= Y [((-1)'V(e-j0)
i=0
X (Duij(@ - j0) + i 5((G + 10— @)1,
where

a7

n

K(e) = TT1AG8 -],

j=1

V(o) = [TtAce+j8)1.

j=0




596

It is easy to verify that K(p) = K(—¢) and V(@) = V(6 — ).
Suppose that the parameter B satisfies the conditions: 0
< ReP < 26, Im¢ < 0. Then, the ceefficient K(p) will
have no poles in the haif-band 0 < Re ¢ < n8, Im@ > 0.

Thus, equation (17) represents a problem stated in
the same way as the problem represented by equations
(10) and (11), except that the function f~ and the
parameter © are replaced by the combination K(¢) i, ()
and the angle wn/m, respectively. Correspondingly, the
solution to this problem is determined by formula (12).
The integration path I is shown in Fig, 1.

A closer approximation of the solution in the half-
band 0 < Re@ < n8, Im@ > 0 is given by the formula

A _ 1 ~ sin(ngQ/nB)de'
(@) = 2neiK((p)J-cos(n(p‘/n6)—cos(ﬂ:(plnﬂ)
r

a-1
X 3 (1) V(¢ - j0)(Dun(e' - jO)

=0

(18)

+ @G+ DB-)).

We rearrange the right-hand member of this equation
by changing the integration variable:

1

“l®) = 3K (e)
y ““ﬁz -t V(@) sin (7(@' + 2/8)/n8)dg’
— cos(m(Q’ + 270)/n8) — cos(mp/nB)
i= r-2j8

x (Do) + (8- ¢)) (19)

. inz/i} J'

J=1r+2j6-ne

V(g )sin(n(o —2;0}/nb)do'
cos(m(Q' —20)/n8) — cos(np/nd)

x (bo(9') + di(8 - m‘))}

where the square brackets indicate the calculation of
the integral part. The integration paths can be trans-
formed to the path y without intersections of the poles
of the integrands and without leaving the domains of
the decrease at infinity. Taking inio account the trigono-
metric formula

sin(y - 2mj/n)

sinny _ lz
COSRY —cosndl. R 0cos(\y— 2njfn) - cosol’
j=

SHANIN

we bring solution (19) to the form

L J- V(¢')sin{mq')de’
20iK(9)J cos(m") — cos(mep)
¥

() =
(20)

x (Do(g) + di(6 - ).

Using the known representation of the Malyuzhinets
function [1)

_ m n COSQ(k, l) (—I)l
Worniaml ) = HH[COS((G/H +a(k, l))/2):i ’

k=tl=1

alle D) = (2.!,1— 1 _2k”: 1)3

we conclude that, for a wedge angle ©t/m, where m is
even, formula (20) is coincident with solution {9).

Recall that, above, we imposed rather severe condi-
tions on B. If B does not satisfy these conditions, the sit-
uation becomes complicated. At arbitrary values of J3,
the expression K(p)i (¢} may have simple poles in the
half-band 0 < ¢ < 18, ImP > 0, which will preclude the
direct application of formula (12).

To overcome this difficulty, we can use the follow-
ing method. We can preset some undetermined values
of & () at the points g; corresponding to the poles of
K{(®) in the given half-band and construct an equation
of type (10) for the difference

a:

i

cos(np/n) - cos(mp/n)’

K(@)ag(e) -

Such an equation allows the direct application of
formula (12), but the condition of the decrease at infin-
ity may appear to be insufficient for the calculation of
the undetermined values of g;. This situation has the
following explanation. Equation (17) is a consequence
of equation (3}, while the reverse is not true. At some
values of B, a homogeneous equation of type (17) has
solutions that are not solutions to the homogeneous
equation (3).

To eliminate the ambiguity, we can, for example,
complement equation (17) with condition (3) for a
finite set of values of the argument represented in the
form +[3 + jB, where the absolute value of j does not
exceed m. In this case, the condition of the decrease of
& () at infinity is sufficient for the determination of all
values of a;, and the solution again passes into solution (9}.
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