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Abstract.
Embedding formulae allow one to decompose scattering problems apparently

dependant upon several angular variables (angles of incidence and observation) into
those dependant upon fewer angular variables. In terms of facilitating rapid compu-
tations across considerable parameter regimes this is a considerable advantage. In
this short article we concentrate on embedding formulae for a typical problem from
acoustics in three dimensions.
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1. Introduction

In three dimensions, the solution of a diffraction problem is usually
represented as a function of four angular variables: two of them specify
the direction of the wave vector of the incident plane wave illuminating
the obstacle, and the other two are the direction of the scattered wave.
The far-field diffraction pattern is a function of these directions. For
numerical work, it can be time consuming to perform a parametric
study - all angular variables must be independently varied and the
numerical routine rerun for each value.

Fortunately, for many practically important cases there exists an
elegant mathematical theory, unfortunately it is little known and not
often utilized, that enables one to reduce the dimension of the problem.
The essence of this theory is the following: instead of directly solving
the main diffraction problem with the desired plane-wave incidence,
a set of different auxiliary problems are solved. For example, if the
obstacle is a planar crack in the medium, the auxiliary problems are
associated with the excitation of the field by a point source located
asymptotically close to the edge of the crack. We could also interpret
these auxiliary solutions as unphysically singular eigensolutions of the
problem, in the sense that they no longer have the usual local square
root dependence of the acoustic potential at the edge (i.e. having the
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dependence of the form ∼ r1/2) but are square root singular there (i.e.
have the form ∼ r−1/2).

The solution of the auxiliary diffraction problem (in 3D) depends
on only three variables: the position of the crack edge, where the
source is located and the two angles which determine the direction
of the scattering. The solution of the original diffraction problem is
represented as the integral of the solutions of the auxiliary problems.
Such a representation is called an embedding formula.

Embedding formulae have been derived by several previous authors
for various diffraction problems, these have used a different set of
auxiliary problems, or have used theories based explicitly upon in-
tegral equations beginning with (Williams, 1980), and this triggered
further applications to cracks in elastic solids, (Martin and Wickham,
1983), and recently the method has been embraced by (Biggs et al.,
2000; Biggs and Porter, 2001; Biggs and Porter, 2002). However, ex-
cept for the article by (Williams, 1980) who uses grazing incidence to
generate the auxiliary solutions, the derivation of embedding formulae
is typically through complicated manipulations of integral equations
which obscures the final structure of the formula.

One purpose of this article is to demonstrate an easy way to derive
embedding formulae, which has a physical interpretation and can be
easily implemented, that is, we use a set of auxiliary solutions that
have immediate interpretations. Here we shall consider incident fields
that consist of plane waves and this is important for the success of the
embedding technique as we utilize this in an operator we apply.

2. Formulation

We suppose that the Helmholtz equation

∇2φ + k2
0φ = 0 (1)

holds in 3D where Cartesian coordinates (x, y, z) are utilized, so φ(x, y, z)
and the crack occupies area S in the (x, y) plane.

For definiteness we take the Neumann boundary condition ∂zφ = 0
on the faces of the planar defect/crack; the approach remains valid
for Dirichlet or in electromagnetic theory for impedance boundary
conditions.

The total field φ is the sum of an incident field φ(in) and a scattered
field φ(sc). The incident field is assumed to be a plane wave

φ(in) = exp[−i(k(in) · x +
√

k2
0 − |k(in)|2z)] (2)
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where k(in) = (k(in)
x , k

(in)
y ) and x = (x, y).

We also require for physically meaningful solutions that suitable
edge conditions (Meixner’s) are fulfilled, which for our planar problem
means that the field near the edge of the crack has the asymptotic
behaviour that

φ ∼ Kr1/2 cosϕ/2, (3)

where r is the distance between the observation point and the edge
of the crack/defect; ϕ is the angle in the local cylindrical coordinates
taken such that ϕ lies along the crack face on z = 0+.

We utilize uniqueness, that is, we consider only the scattered field,
i.e. φ = φ(sc) and assume that the Helmholtz equation, boundary, ra-
diation and edge conditions be fulfilled. Then φ = 0 identically. We
assume that the theorem of uniqueness is satisfied by all diffraction
problems considered here.

Using the spectral language, we assume that the parameter k0 of
equation (1) does not belong to the spectrum of the problem, that is,
we cannot have any trapped modes. Note that the method proposed
below is applicable even if k0 belongs to the spectrum and has finite
degeneration. However, in this case the method should be modified.

2.1. Auxiliary solutions of the diffraction problems

We require the solutions of auxiliary problems, namely diffraction prob-
lems with point source incidence (or a line source for a 2D problem).
The scatterer is assumed to have the same geometry and (homoge-
neous) boundary conditions as the scatterer of the initial diffraction
problem, and the source is located near the edge of the crack. For our
present purpose one cannot simply place the source near the edge of
the crack, since the Neumann condition is fulfilled on the crack faces,
and we still assume the physically meaningful, Meixner’s condition, is
fulfilled at the edge. It is also assumed that the radiation condition at
infinity holds.

We now consider a limiting procedure, that is, we quantify how near
the source is to the edge, in terms of which the auxiliary functions will
be treated. We introduce a coordinate l along the edge of the crack, and
take a point lying in the (x, y) plane a small distance, ε, from a position
l0 = (x0, y0, 0) on the contour Γ (see Fig. 1). We consider a diffraction
problem with a pair of point sources, strength −πε−1/2/2, above and
below the crack; we solve the inhomogeneous Helmholtz equation for
the function φ̂ε(x, y, z; l0):

∇2φ̂ε + k2
0φ̂ε = −1

2
πε−1/2δ(x− x′)δ(y − y′)δ(z − 0)+
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Figure 1. Location of a point source

Figure 2. To the geometry of the problem

1
2
πε−1/2δ(x− x′)δ(y − y′)δ(z + 0), (4)

where δ is the delta-function,

x′ = x0 − ε sinΘ, y′ = y0 + ε cosΘ.

Here Θ is the angle between the vector dl tangential to Γ and the x-axis
(see Fig. 2).

A detailed study shows that for each point (x, y, z), with the excep-
tion of the point l0 on Γ, there exists a finite limit

φ̂(x, y, z; l0) = lim
ε→0

φ̂ε(x, y, z; l0). (5)

The function φ̂(x, y, z; l) is the auxiliary solution.
The auxiliary problem has one important property: it depends on

fewer variables than the physical diffraction problem. The function φ(sc)

depends explicitly on 3 variables (the spatial coordinates) and implic-
itly on 2 variables: the parameters kx and ky of the incident wave, i.e.,
the total number of variables is 5. The number of the arguments of φ̂
is 4. We assume that the function φ̂(x, y, z; l) is known and express the
solution of the initial diffraction problem, with plane-wave incidence,
in terms of this function.
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Below we shall use the asymptotics of the auxiliary solution at the
edge. Consider the integral

φ∗(x, y, z) =
∫

Γ
ρ(l)φ̂ε(x, y, z; l)dl, (6)

where the sources of the field are concentrated along the contour Γ
and have line density ρ(l). We assume this density to be a continuous
function having period equal to the length of the contour Γ. One can
show that for fixed r

lim
ε→0

φ ∼ ρ(l) cos(ϕ/2)
r1/2

+ O(r1/2). (7)

One can see that the source near the edge of the crack leads to a field
with edge asymptotics stronger, than is allowed by the usual Meixner’s
conditions. This property will be used below.

We see that there are two equivalent ways to introduce the auxiliary
solution. The first one is to introduce a point source near the the edge
and the corresponding limiting procedure. The other is to formally
introduce a solution having the edge asymptotics that is stronger than
it is allowed by the edge conditions. However, the second way is a
bit cumbersome in the 3D case, where it is necessary to provide the
oversingular behaviour at a single point of the edge.

2.2. Directivity of the field

In the far field zone the leading term of the scattered field can be
written as the modulated spherical wave:

φ(sc)(x, y, z) ∼ −eik0R

2πR
D(θx, θy; θ(in)

x , θ(in)
y ), (8)

where R =
√

x2 + y2 + y2; θx = arccos(x/R); θy = arccos(y/R); θ
(in)
x =

arccos(k(in)
x /k0); θ

(in)
y = arccos(k(in)

y /k0); D is the directivity of the
field. Utilizing the Green’s formula, one can express the directivity as
the Fourier-transform of normal derivative of the scattered field on the
crack:

D(θx, θy; θ(in)
x , θ(in)

y ) = ik0

√
1− (cos2 θx + cos2 θy)×

∫∫

S
φ(sc)(x, y,+0) e−ik0(x cos θx+y cos θy)dx dy. (9)

Analogously, the auxiliary solution can also be represented using its
directivity:

φ̂(sc)(x, y, z; l) ∼ −eik0R

2πR
D̂(θx, θy; l), (10)
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and the directivity can be calculated as

D̂(θx, θy; l) = ik0

√
1− (cos2 θx + cos2 θy)×

∫∫

S
φ̂(sc)(x, y,+0; l) e−ik0(x cos θx+y cos θy)dx dy. (11)

The embedding formula, which will be derived below, expresses the
function D(θx, θy; θ

(in)
x , θ

(in)
y ) in terms of D̂(θx, θy; l).

2.3. Derivation of the embedding formula

We are going to derive the embedding formula in three steps: beginning
with applying operators to the total field, followed by an application of
the uniqueness theorem and the reciprocity principle.

Consider

H = (Hx,Hy) = [∇+ ik(in)]φ = (∂x + ik(in)
x , ∂y + ik(in)

y ) (12)

Apply one of this operators (say, Hx) to the total field φ related to the
initial diffraction problem with a plane wave incidence. The function

φ(x, y, z) = Hx[φ(x, y, z)]

has the following properties: it satisfies the Helmholtz equation (1),
contains no incoming waves from infinity or growth at infinity (note
that Hx[φin] ≡ 0), and φ = 0 on the crack surfaces. The conditions of
the uniqueness theorem are satisfied, except for the edge condition. If
the local asymptotics of the field, φ, near the edge are

φ ∼ K(l)r
1
2 cos

(ϕ

2

)
+ O(r

3
2 ),

then
φ ∼ −1

2
K(l)r−

1
2 sin Θ cos

(ϕ

2

)
+ O(r

3
2 ), (13)

where θ is the angle between the x-axis and the unit vector dl tangential
to the contour Γ. That is, φ has an overly singular behaviour at the
edge.

Comparing the edge asymptotics of the function φ in (13) and the
integral of the auxiliary functions (7), one finds that the combination

w(x, y, z) = φ(x, y, z) +
1
2

∫

Γ
K(l) sinΘ(l) φ̂(x, y, z; l)dl (14)

obeys the usual Meixner’s condition at the edge. Furthermore this
function obeys the Helmholtz equation, the radiation condition and
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the Dirichlet boundary condition. Therefore, we apply uniqueness to
this combination and thus w(x, y, z) ≡ 0, and

Hx[φ] = −1
2

∫

Γ
K(l) sinΘ(l) φ̂(x, y, z; l)dl. (15)

This is a weak form of the embedding formula.
The function K(l) in (15) remains unknown, to generate the com-

plete embedding formula we must express K(l) in terms of φ̂(x, y, z; l).
Instead of having an incident plane wave let us take a point source of
the unit strength located at a point (X, Y, Z), such that

X = R
kx

k0
, Y = R

ky

k0
, Z =

√
R2 −X2 − Y 2

and the lengthscale R is much greater than both the size of the scat-
tering region and the wavelength (being more accurate, we assume
that the point (X, Y, Z) is located in the far field zone). The incident
field from the source is asymptotically a plane wave having the form
(2) multiplied by the factor −(4πR)−1eik0R. To find K(l) we take the
observation point, in the (x, y) plane, to be at a small distance ε from
the point l on the edge contour Γ. We multiply the value of the field at
the observation point by ε−1/2 and take the simultaneous limits that
R →∞ and ε → 0. The result is K(l) from the formula (15) multiplied
by −(4πR)−1eik0R.

We now use the reciprocity principle (Junger and Feit, 1986) and
interchange the source and observation point in the limit procedure
described above, that is, the source is now near the edge, and the obser-
vation point is at (X,Y, Z). From the Helmholtz reciprocity principle,
the value of the field for this interchanged problem is the same as that
of the original problem. The diffraction problem with the point source
located near the edge is the auxiliary problem, the solution under the
appropriate limit is φ̂(x, y, z; l). Hence

K(l) = 4 lim
R→∞

[Re−ik0Rφ̂(X,Y, Z; l)]. (16)

Using the formula (10), we obtain that

K(l) = − 2
π

D̂(θ(in)
x , θ(in)

y ; l), (17)

That is, the edge behaviour of the physical problem is represented in
terms of the far field of the auxiliary solution.

Next we substitute the relation (17) into the embedding formula
(15), differentiate with respect to z and perform the Fourier transfor-
mation in the (x, y)-plane. The result is

D(θx, θy; θ(in)
x , θ(in)

y ) =
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− i

πk0

(
cos θx + cos θ

(in)
x

)
∫

Γ
D̂(θx, θy; l)D̂(θ(in)

x , θ(in)
y ; l) sinΘ(l)dl.

(18)
It is interesting to note that another embedding formula emerges by

applying the operator Hy and repeating the arguments above:

D(θx, θy; θ(in)
x , θ(in)

y ) =

i

πk0

(
cos θx + cos θ

(in)
x

)
∫

Γ
D̂(θx, θy; l)D̂(θ(in)

x , θ(in)
y ; l) cos Θ(l)dl. (19)

Note that the arguments remain the same when the boundary con-
ditions on the crack are chosen to be the Dirichlet or impedance ones.

2.4. High frequency asymptotics

One is not limited to dealing with exact or numerical solutions to the
eigenstates, it is perfectly viable to adopt an asymptotic approach for,
say, high frequencies and utilize this within the embedding framework.
So although the embedding formulae themselves are valid for arbitrary
ratios of wavelength to the size of the scatterer, it is interesting to
construct the short wave/ high frequency approximation and apply it
to the embedding formulae. For high frequencies an explicit approx-
imation for the auxiliary function/ eigenstate φ̂ is easy to find and,
thus, to write down a complete approximate solution for the diffraction
problem. By eigenstate we mean the situation where we take the source
to lie precisely at the crack edge.

The embedding formula is in the same form as that arising through
the geometric theory of diffraction Keller (1962), Achenbach et al (1982);
this therefore provides another mathematical route to these asymptotic
solutions, and provides justification for their efficiency and accuracy
even at mid to low frequencies when they might be supposed to be
poor (Keller, 1962; Achenbach et al., 1982).

The calculation of the function D̂(θx, θy; l) is a very complicated
problem. If the wavelength is much smaller than the characteristic size
of the scatterer, the crack near the edge is locally a half-plane, and the
remote parts of the crack do not play an important role in diffraction.
So, it is natural to approximate D̂ by the corresponding function for
a half-plane crack. Using the exact solution of the half-plane problem
with point source incidence,

D̂(θx, θy; l) ≈ −√−πi
(√

k2
0 − k2

τ − kη

)1/2

ei(kxx0+kyy0) (20)

PROC02.tex; 9/07/2002; 11:10; p.8



9

Figure 3. The diffracted rays

where (x0, y0) are the coordinates of the point of the edge, kη and kτ

are the projections of the wavenumber k on the directions normal to Γ
and tangential to it, respectively. These values can be calculated using
the relations

kη = −k0 cos θx sinΘ + k0 cos θy cos Θ,
(21)

kτ = k0 cos θx cosΘ + k0 cos θy sin Θ.

Substituting the function (20) into the embedding formula (18) and
consider the exponential factor, the integrand oscillates rapidly every-
where except at stationary points of Γ, that is, where the vector dl is
orthogonal to the difference of the vectors k = (k0 cos θx, k0 cos θy) and
k(in) = −(k0 cos θ

(in)
x , k0 cos θ

(in)
y ). These stationary points provide the

main terms of the asymptotics of the field.
If we consider the case k 6= k(in). There are two stationary points, I

and II, at which Γ is orthogonal to k− k(in). (there are 2 such points,
namely, the points I and II in Fig. 3). At each point we (first, say, for
the point I) use the local coordinates η and τ , and calculate the compo-
nents of the vectors (kτ , kη) and (k(in)

τ , k
(in)
η ) using the transformation

formulae (21). Note that kτ = k
(in)
τ .

Using the method of stationary phase we obtain

DI ≈ De
I ×Da

I ×Dc
I , (22)

where De
I , Da

I and Dc
I are the exponential, angular and curvature

factors, respectively:

De
I = exp{−ik0[x0(cos θx + cos θ(in)

x ) + y0(cos θy + cos θ(in)
y )]},

Da
I =

(
√

k2
0 − k2

τ + k
(in)
η )1/2(

√
k2

0 − k2
τ − kη)1/2

kη − k
(in)
η

,

Dc
I =

(
πi

(kη − k
(in)
η )dΘ/dl

)1/2

.
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Analogously, the term corresponding to the stationary point II (and
all other stationary points, if there are any others) should be estimated,
and the sum over all of them should be taken.

One can see that the expression (22) has the structure peculiar to
the classical ray asymptotics of the Geometrical Theory of Diffraction
(Keller, 1962).

3. Concluding remarks

Overly singular eigenstates/ auxiliary functions are clearly a useful de-
vice for extracting directivities using embedding and allows for a phys-
ical interpretation in terms of line source incidence. We have demon-
strated that embedding is related to high frequency asymptotic tech-
niques. The approach is also useful in combination with Wiener-Hopf
techniques and embedding is clearly applicable to elasticity and surface
waves, (Craster and Shanin, 2002). Thus embedding should become a
method of choice when solving integral equations in diffraction theory.
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