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Wave modes in periodic systems of thin tubes

Andrey V. Shanin, Maxim S. Dorofeev
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The problem of wave propagation in a periodic sys-

tem of thin tubes is studied. The waves are de-

scribed by the dispersion diagrams, i.e. by the de-

pendencies of the propagation constants on the tem-

poral frequency. The main question under consider-

ation is how many modes can propagate in a partic-

ular system. The paper presents a method of find-

ing the dispersion diagrams, and an inequality for

the number of modes, linking the number of modes

with the topological properties of the system.

1 Introduction

Consider an infinite periodic set of tubes filled with
compressible lossless linear gas (or liquid). The
tubes are assumed to be one-dimensional, i.e. only
propagation of the piston mode is taken into ac-
count. The tubes are connected with each other
by small nodes. We assume that for each node the
sum of incoming flows is equal to zero. There can
be dead ends (i.e. closed nodes), or open nodes.
The flow from the close node is equal to zero, and
the pressure at an open node is equal to zero. An
example of the system is shown in Fig. 1.

Here “periodic” means single-periodic, i.e. the
system is infinite along only one dimension (from
left to right in the figures). A stationary (time har-
monic) problem is studied. The time dependence
has form e−iωt and is omitted everywhere.

The smallest period of the system will be called
a cell of the system. The cuts separating a cell will
be called the terminals of the cell. The terminals
are divided into input and output terminals (we
assume that the positive direction of mode propa-
gation along the cell is from the input terminals to
the output terminals). The choice of the cell shape
is not unique.

We assume that each terminal is connected with
only one tube within the cell, i.e. the cut points are
chosen somewhere in middles of tubes before split-
ting the system into the cells, rather than cutting
across the nodes connecting three or more tubes.

Note that for many cells even the number of in-
put/output terminals is not uniquely defined. For
example, in Fig. 1 there is a possibility to split
the system into cells having two or three input ter-
minals. However, the number of output terminals
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Figure 1: Periodic system of tubes (top) and
a single cell (bottom)

should always be equal to the number of input ter-
minals.

As a practical application we have in mind water
supply or ventilation systems in tall buildings. A
cell in such a system is naturally the set of ducts
belonging to a single floor.

Let the input terminals be numbered, and let the
output terminals be numbered by the same num-
bers in a matching order. We associate with the
input terminals the pressures pm, m = 1, . . . ,M
and the gas flows wm directed into the cell. Ac-
cordingly, we associate with the output terminals
the pressures p′m and the flows w′

m directed from
the cell (see Fig. 1). A wave mode is a solution of
the governing equations in the tubes and boundary
conditions in the nodes obeying the relations

p′m = λpm, w′

m = λwm, (1)

where
λ = λ(ω) = exp{iβ(ω)} (2)
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is common for all terminals. The value β(ω) will
be called a propagation constant.

As usually, there can be propagating modes cor-
responding to real β and evanescent modes corre-
sponding to β having a non-zero complex part. A
propagating mode can propagate either in the pos-
itive or in the negative direction. The direction can
be established by studying the group velocity

vgr = H(dβ/dω)−1, (3)

where H is the length of the cell. As we shall see
below, for each mode having propagation constant
β there exists a mode having the propagation con-
stant equal to −β, i.e. a mode propagating or de-
caying similarly, but in the opposite direction.

For complicated cells for a fixed time frequency
there can exist different types of modes. The main
task of the current work is to estimate the number
of modes and to compute the dispersion diagrams,
i.e. the dependencies βj(ω) for different modes la-
belled by the index j.

If there exists a matrix T connecting the pres-
sures and flows at the output with the pressures
and flows at the input, i.e.

(p′1, . . . , p
′

M , w′

1, . . . , w
′

M )t =

T · (p1, . . . , pM , w1, . . . , wM )t (4)

then the values λj would be simply the eigenvalues
of T (ω). From this consideration it is clear that the
number of modes cannot be more than 2M , and the
number of modes running in the positive direction
cannot be bigger than the number of input termi-
nals. The problem is that in many cases it is impos-
sible to construct such a matrix T . For example,
for the cell shown in Fig. 1 such a matrix does not
exist. A natural explanation is that instead of a
cell with 3 terminals one could select a splitting for
which each cell has only two terminals (for such a
splitting a matrix T does exist). So one can sup-
pose that the number of modes, propagating in the
positive direction is equal to the minimum number
of terminals available for some splitting. However
this is not true, and below we discuss it in details.
We develop another technique applicable to any cell
and any splitting.

2 Mathematical formalism

Consider a single tube of the length L (see Fig. 2).
Introduce a coordinate l along the tube. The cross-
section S of the tube may depend on l. Denote the

pressures at the ends of the tube by p1 and p2, and
the flows from corresponding ends by w1 and w2.
Construct a matrix C connecting the flows with the
pressures (i.e. a DtN mapping for a tube):

(

w1

w2

)

= C

(

p1

p2

)

. (5)

In the general case this matrix can be obtained by
solving the Webster’s equation

d2p

dl2
+

1

S

dS

dl

dp

dl
+ k2p = 0, w(l) =

S(l)

iωρ0

dp

dx
, (6)

where k = ω/c0, c0 and ρ0 are the speed of sound
and the density of the medium. The flow in the sec-
ond relation is taken with respect to the positive l
direction. There are two linearly independent so-
lutions of the Webster’s equation, so one can find
the integration constants from the boundary values
(p1, p2), and then reconstruct the boundary values
(w1, w2). Here we write down the form of matrix
C for the case of a constant cross-section:

C = −
iS

ρ0c0 sin(kL)

(

cos(kL) −1
−1 cos(kL)

)

. (7)

Also it is easy to find such a matrix for the cross-
section depending on l linearly or quadratically.
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Figure 2: A single tube

Note that the matrix is symmetrical, i.e.

C1
2 = C2

1 . (8)

This relation is true for arbitrary shape of the tube,
i.e. for an arbitrary function S(l). The proof follows
immediately from the Green’s theorem. This fact
is important for what follows.

Let us construct an equation for finding the pa-
rameter λ. Consider a waveguide mode in a cell
described above. Denote the pressures at the nodes
of the cell by p1, . . . , pN . The first M values, i.e.
p1, . . . , pM are related to the input terminals, and
the values pM+1, . . . , pN are the pressures at the in-
ternal nodes of the cell. The pressures at the output
terminals are not taken as independent unknowns
since they are equal to λp1, . . . , λpM . The pressures
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at the open nodes are also not taken into account,
since they are known to be zero. Thus, for the cell
shown in Fig. 1 N = 7.

We assume that no tube connects directly an in-
put and an output terminal. If this happens, one
can place an additional node somewhere on the
tube.

To determine λ and p1, . . . , pN consider the flows
going to each node (including the input terminals).
The sum of these flows should be zero, and this con-
stitutes N linear equations, which can be written
in the matrix form as follows:







W1

...
WN






≡ G







p1

...
pN






= 0, (9)

where Wn is the sum of all flows into the node n.
The matrix G can be obtained from (7) as fol-

lows:

G =
∑

ν

Gν . (10)

The index ν runs over all tubes. The matrices Gν

are constructed by the following rules. Let Cν be
the matrix (5) found for the tube with index ν. Let
this tube connect the nodes n1 and n2 which are
either internal nodes of the cell or input terminals.
Then

(Gν)m1

m2
= δm1,n1

δm2,n1
(Cν)11 + δm1,n1

δm2,n2
(Cν)12+

δm1,n2
δm2,n1

(Cν)21 + δm1,n2
δm2,n2

(Cν)22. (11)

Here and below δ is the Kronecker’s delta. This
formula means that the only non-zero elements of
Gν stand on the crossings of rows and the columns
with indices n1, n2 and these elements are equal to
corresponding elements of the matrix Cν .

If the tube ν connects the internal node n with
an open node, and the open node corresponds to
the second node in Fig. 2, then

(Gν)m1

m2
= δm1,nδm2,n(Cν)11. (12)

If the tube connects the output terminal n1 with
the internal node n2 then the structure of the wave
mode should be taken into account. This structure
results in the non-diagonal terms’ dependence on λ:

(Gν)m1

m2
= δm1,n1

δm2,n1
(Cν)11+δm1,n1

δm2,n2

(Cν)12
λ

+

δm1,n2
δm2,n1

λ(Cν)21 + δm1,n2
δm2,n2

(Cν)22 (13)

This dependence reflects the fact that the tube con-
nects nodes belonging to different cells in the chain.

Thus, for the case of tubes having constant cross-
sections, the matrix G is defined explicitly. This
matrix depends on λ and ω. If for some λ there
exits a waveguide mode, then due to (9),

det[G(λ, ω)] = 0. (14)

Being considered as a function of λ, the determi-
nant (14) is a polynomial of λ and λ−1. By con-
struction and by taking into account (8),

G(λ, ω) = Y1(ω) + λY2(ω) + λ−1Y t
2 (ω), (15)

where Y1 is a symmetrical matrix. This means that
G(λ) = Gt(λ−1) , and

det[G(λ, ω)] = gω(λ + λ−1), (16)

where gω(z) is a polynomial. Each root of this poly-
nomial, if not equal to ±2, corresponds to a pair of
different λ1,2, and thus to a pair of propagation
constants β1,2, such that β2 = −β1. If all roots of
gω are simple and not equal to ±2, and the degree
of the polynomial in equal to η, then there exist η
different wave modes propagating in each direction.
In any case, the numbed of modes propagating in
the positive (or negative) direction is not bigger
than η. The main aim of the rest of the paper is to
estimate η.

3 Some examples

Here we study two simple examples, namely a cell
with an open node, and a cell with a close node
(see Fig. 3). For these cells we construct a matrix
G by the algorithm described above and find the
dispersion diagram.
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Figure 3: Two simple examples of cells

Consider a cell shown in Fig. 3 (left). According
to the procedure outlined above, the G-matrix has
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form of

iρ0c0G = S1

(

cot(kL1) − csc(kL1)
− csc(kL1) cot(kL1)

)

+

S2

(

cot(kL2) −λ−1 csc(kL2)
−λ csc(kL2) cot(kL2)

)

+

S3

(

0 0
0 cot(kL3)

)

. (17)

One can see that the polynomial gω defined by
(16) is linear for this case. This means that gener-
ally there are two modes, one in each direction.

We have computed the propagation constants
β(ω) with the following set of dimensionless pa-
rameters: ρ0 = c0 = 1, S1 = S2 = S3 = 1,
L1 = L2 = 1, L3 = 10. The real and imaginary
parts of β are shown in Fig. 4. Note that the real
part takes values from −π to π.

Figure 4: Dispersion diagram for a cell with
an open node

The ω axis is split into the segments of trans-
parency (where Im[β] = 0) and opacity. The dia-
gram starts with an opacity region. In the transpar-
ent regions there are two opposite values of Re[β].

The positive Re[β] corresponds to the mode travel-
ling in the positive direction, and the negative one
corresponds to the mode travelling in the negative
direction (note that positive values of β correspond
to positive dβ/dω). In the opacity regions there
are also two modes, decaying in the positive and
negative direction.

The decay parameter tends to infinity at the res-
onance frequencies of the tube with an open end.

Consider similarly the cell shown in Fig. 3, right.
Again, performing the computations according to
the method described above,

iρ0c0G = S1





cot(kL1) − csc(kL1) 0
− csc(kL1) cot(kL1) 0

0 0 0



 +

S2





cot(kL2) −λ−1 csc(kL2) 0
−λ csc(kL2) cot(kL2) 0

0 0 0



 +

S3





0 0 0
0 cot(kL3) − csc(kL3)
0 − csc(kL3) cot(kL3)



 (18)

The propagation constants computed similarly to
the previous case are shown in Fig. 5. The compu-
tations were conducted for the same parameters.

The properties of the diagram are mostly the
same as discussed above. A major difference is
that the first (i.e. low-frequency) zone is transpar-
ent. This means that in a closed system there is
a possibility of propagation of low-frequency low-
dispersive modes, whose properties are very close to
usual longitudinal waves, but the velocity is lower
than the velocity of sound in the medium.

4 Topological estimation of the number

of modes

Let us estimate the degree of the polynomial gω,
i.e. find the maximum number of modes travelling
or decaying in the positive direction. In the exam-
ples considered in the previous section this question
was quite trivial: since there was only one input
terminal per a cell, the maximum number of modes
travelling or decaying in the positive direction was
one. As we can see from the dispersion diagrams,
for almost all temporal frequencies this estimation
was exact. However, for bigger amount of input /
output terminals the problem becomes non-trivial.

Let us formulate the main result of the section
and the paper. Define a closed loop in a cell as fol-
lows. Take a single cell of the system. Attach the
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Figure 5: Dispersion diagram for a cell with a
closed node

output terminals to corresponding input terminals.
The result will be called a closed cell. A closed loop
is a closed oriented path along the closed cell, pass-
ing each node no more than one time. This path
should go from node to node along the tubes. The
path is not necessarily connected, i.e. it can con-
sist of several closed oriented sub-loops. We allow
as a possibility a path consisting of a single node,
and a path consisting of two nodes connected by
a tube (however both of these possibilities are not
important for what follows). The main feature of
the closed loop is that a double pass through a node
is not allowed.

Introduce the order of the closed loop as follows.
At each point where the loop crosses a terminal,
assign +1 if the loop goes from the output to the
input terminal, and −1 if the loop goes in the op-
posite direction. The order of the loop is the sum
of all assigned values. In Fig. 6 we represent several
cells and loops in them. Note that in (c) only the
points marked by circles are nodes. Simple inter-
sections in the figure correspond to tubes passing

one above another without having common points.
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-1

order = 0
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Figure 6: Examples of closed loops on cells

The main result is as follows:

Theorem 1 The degree of gω is not bigger than the
maximum possible order of closed loop for a given
cell.

Before proving this statement let us demonstrate
that it is useful and non-trivial. Consider the cell
shown in Fig. 7. It is not easy to guess the number
of modes in such a cell, and the intuitive estimation
is 3, since any cross-section of the system crosses at
least three tubes. However, the maximum order of
loop is 2, and the analysis based on the G matrix
confirms this estimation of the number of modes.
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Figure 7: An example of a cell

Let us prove the theorem. First, make a prepara-
tory step. If an inner node is connected both with
some input terminal and some output terminal, in-
sert an additional node between the inner node and
the input terminal. Obviously, putting a node on
an existing tube changes only mathematical expres-
sions, but not the physics and not the answer. For
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example, for the cell in Fig. 7 it is necessary to in-
sert nodes between 1 and 5, 2 and 6, 3 and 7, 4
and 7. As the result, dimension of matrix G be-
comes bigger, but each non-zero non-diagonal ele-
ment corresponds exactly to one tube.

Consider the standard representation of det[G]:

det[G] =
∑

d

ε(d)G1
d1

G1
d2

G1
d3

. . . G1
dN

, (19)

where N is the number of nodes (inner nodes plus
input terminals), d is a permutation of the numbers
1 . . . N , ε = ±1 depending on the parity of the per-
mutation. Obviously, if λη is the maximum power
of λ contained in det[G], then there exists such a
permutation d that the product

G1
d1

G1
d2

G1
d3

. . . G1
dN

(20)

is non-zero and contains λη. Note that each factor
in (20) can be either a constant with respect to λ,
or be proportional to λ±1. The statement of the
theorem follows from the fact:

Each non-zero product having form of (20) cor-
responds to a closed loop on the cell. The power η
is equal to the order of the loop.

To prove the last fact note that Gm
dm

6= 0 means
that there exists a tube connecting the nodes with
the numbers m and dm. Split the permutation d
into a set of non-intersecting cycles. Consider a
cycle

m1 → m2 → m3 → . . . → mh → m1. (21)

There should exist tubes connecting m1 with m2,
m2 with m3, etc up to mh with m1. So, we can
define a loop composed of sub-loops connecting the
nodes in the order (21). All conditions of the defini-
tion of a closed loop will be fulfilled. Each sub-loop
is defined on a closed cell, since the input and out-
put terminals are labelled by the same indices.

If a tube connects two inner node or an inner
node with the input terminal, then corresponding
Gmn

mn+1
is a constant with respect to λ. If the tube

goes from an inner node m to an output terminal n,
then corresponding Gm

n is proportional to λ. Note
that the same pass adds +1 to the order of the
loop. If a tube goes from an output terminal n to
an inner node m, then corresponding factor Gm

n is
proportional to λ−1, and of course this pass adds
−1 to the order of the loop.

Thus, the proof of the theorem is completed. Al-
though the theorem states an inequality, a less hum-
ble (and more adequate) formulation would be “al-
most always equal to” instead of “no bigger than”.

5 Conclusion

On the base of Dirihlet-to-Neumann approach
the number of modes propagation through one-
periodical 1D pipe system is linked to the degree
of the polynomial gω. A topological estimation of
the degree of the polynomial gω is obtained.
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