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WEINSTEIN’S DIFFRACTION PROBLEM: EMBEDDING FORMULA
AND SPECTRAL EQUATION IN PARABOLIC APPROXIMATION∗

ANDREY V. SHANIN†

Abstract. A short-wave problem of reflection and radiation by an open end of a two-dimensional
planar waveguide is studied. The incident mode is assumed to have frequency close to the cut-off.
The problem is studied in the parabolic approximation. A recently developed approach based on
the embedding formula and the “spectral” equation for the directivity of an edge Green’s function
is applied to the problem.
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1. Introduction. A classical problem of diffraction theory is revisited, namely
the stationary problem of a travelling mode reflection by an open end of a planar
waveguide. The width of the waveguide is assumed to be large comparatively to the
wavelength, and the partial waves of the incident mode are assumed to be propagating
almost normally to the walls (i.e., the frequency is close to the cut-off frequency of
the incident mode).

The short-wave reflection from an outlet of a waveguide seems to be one of the
most difficult solved problems in the diffraction theory. Two features responsible for
the difficulties can be explained in terms of the ray theory. First, the process is highly
reverberant; i.e., plenty of successive diffractions by the edges of the waveguide should
be taken into account. Second, for each diffraction act the edge of the scatterer lies
on the boundary of the shadow zone of the field generated by the previous diffraction
act. Each diffraction order possesses a more complicated structure of the penumbral
field. Keller’s ray approximation fails in this case, and significantly more sophisticated
techniques should be used (e.g., a uniform theory of diffraction).

The problem is described by two dimensionless parameters. The first is the prod-
uct ka, where k is the wavenumber, and a is the width of the waveguide. The second
is the “incidence” angle θin measured between the direction of propagation of the
partial wave in the waveguide and the normal to the waveguide wall. The short-wave
consideration studies the case ka � 1. Here we also impose the limitation of the
skew-incidence, i.e., θin � 1.

A very important parameter of the problem is the combination βin =
√

ka θin.
Since it is a product of a large and a small number, its magnitude is not specified.
A practically important case corresponds to βin � 1. As is known [1], the reflection
coefficient in this case is close to −1. (This should not be confused with a quite oppo-
site case of the long-wave reflection of a piston mode by an open end of a waveguide,
for which the coefficient is also close to −1.) The result finds its applications in the
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theory of Fabri–Perrot resonators with planar mirrors. The fact that the reflection
coefficient is close to −1 is responsible for a high Q-factor of such a resonator. A small
correction for the reflection coefficient enables one to estimate the diffraction losses
in the resonator.

Three approaches are known to be applied to this problem. The Wiener–Hopf
method [1, 2, 3] was used to obtain an exact solution of the problem. The ray method
and its modification, uniform theory of diffraction, was used to analyze the diffracted
fields appearing as the result of multiple diffractions [4, 5]. Later, the methods based
on the uniform theory of diffraction were used to study more complicated diffraction
problems [6, 7, 8]. The Fox–Li integral equation [9] can be used to study numerically
the process mainly for the resonator case. It is necessary to note that an exact
summation of the diffraction series, performed, e.g., in [6, 7], uses the Wiener–Hopf
method as well. Unfortunately, the Wiener–Hopf method can be applied to a rather
restricted set of problems. If the problem admits an integral equation formulation,
the kernel should have a difference form. The aim of this paper is to develop an
alternative approach to the Weinstein problem, namely the one that is not using the
Wiener–Hopf formalism. Later, we plan to apply this approach to a wide set of more
complicated waveguide problems, namely to reflection by an end of a waveguide with
nonparallel walls, a waveguide with a partially closed end, and some others.

In the present paper a novel technique is applied to the Weinstein problem. The
method comprises derivation of the embedding formula (see, e.g., [10, 11, 12, 13, 14])
and solving the spectral equation (see, e.g., [15]).

The term “embedding formula” was introduced by Williams in [10]. Initially it
was used as a sophisticated technique applicable to integral equations of a certain
class. Later, two different methods (see, say, [12] and [14]) made this method less
complicated. Now the method is remarkably simple and its results are of considerable
importance for diffraction theory. The class of problems to which the method is
applicable has also significantly broadened. The spectral equation was first introduced
for a strip problem [10] and for a finite diffraction grating problem [16]. Unlike for
the Helmholtz strip or grating problem, for the current problem we get the spectral
equations that can be easily solved in a closed form.

The structure of the paper is as follows. In section 2 the initial problem is formu-
lated.

In section 3 the method of reflections is applied, and the waveguide problem is
reformulated as a problem of wave propagation on a branched surface. The interior of
the waveguide is expanded onto a half-plane, and the waves reflected by the walls of
the waveguide are eliminated. As the price paid for this, an infinite number of branch
points emerge, corresponding to the edges of the waveguide and their reflections.

In section 4 a parabolic equation is formulated instead of the Helmholtz equa-
tion. This approximation simplifies the problem considerably, since the details of
edge diffraction are coarsened. Namely, Keller’s edge diffraction is omitted, and only
Fresnel’s diffraction is left.

In section 5 the edge Green’s function is introduced for the branched surface. This
function is the field on the surface that is generated by a pair of point sources located
near one of the branch points (i.e., it is a solution of corresponding inhomogeneous
parabolic equation obeying the radiation condition). Directivities Si(θ) and Sn(θ) of
the edge Green’s function are also introduced.

In section 6 the embedding formula is derived. For this, a differential operator
H is applied to the field u. The operator has the following properties: it preserves
the parabolic equation on the branched surface, and it nullifies the incident wave.
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However, the operator leads to the appearance of the singularities at the branch
points. These singularities can be interpreted as the sources for the field H [u]. Due to
uniqueness, H [u] can be written as a linear combination of the edge Green’s functions
with the sources located at the branch points. A reciprocity principle is applied to find
the source amplitudes for H [u]. As the result, we get an embedding formula expressing
the reflection coefficient and the radiation directivity in terms of the directivities Si

and Sn related to the edge Green’s function.
In section 7 we derive spectral equations for Si and Sn. For this, an operator

K, which is an analogue of differentiation with respect to the angular coordinate, is
applied to the edge Green’s function v. The argument is quite close to the derivation
of the embedding formula: this operator leads to the appearance of new singularities,
which can be treated as sources of the field K[v].

In section 8 the spectral equations are solved in terms of the series over the values
of the Fresnel integral.

In section 9 the solution is analyzed and compared with the Weinstein’s one.

2. Problem formulation. Consider a two-dimensional acoustic stationary prob-
lem. The time dependence has the form e−iωt and is omitted everywhere. The wave-
length of a plane wave is equal to k = ω/c (here c is the phase velocity of waves).
Study a planar waveguide formed by two half-lines x = 0, y > 0 and x = a, y > 0
(see Figure 2.1). The Neumann boundary conditions are fulfilled on the faces of the
walls; i.e., the normal derivative of the field on the walls is equal to zero.

x

y
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uin
r

Fig. 2.1. Geometry of the waveguide.

We are solving a stationary “acoustical” diffraction problem; i.e., we assume that
the Helmholtz equation is valid in the medium:

(2.1)
(

∂2

∂y2
+

∂2

∂x2
+ k2

)
ũ = 0,

where the field ũ(x, y) stands for the solution of the “exact” equation (as opposed to
the parabolic equation introduced below). All values related to the exact formulation
have tilde decoration.

For correct diffraction problem formulation we have to pose edge and radiation
conditions as well. However, since we are going to continue the study in the parabolic
approximation, the details (being quite standard) are not important now.

We are studying diffraction of a waveguide mode travelling in the negative direc-
tion along the y-axis. This problem involves finding the amplitudes of the waveguide
modes travelling backwards and the directivity of the wave radiated from the end of
the waveguide into the open space.

Define the incidence angle θin as follows. The incident waveguide mode is assumed
to be composed of two partial plane waves of unit amplitude. The incidence angle is
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measured between the direction of propagation of one of the partial waves and the
x-axis (see Figure 2.1). Formally, the incident wave is as follows:

(2.2) ũin = 2 cos(kx cos θin) exp{−iky sin θin}.
Factor 2 indicates that each of the two partial waves has unit amplitude. The angle
θin belongs to the set {θn} describing the waveguide modes. This set is defined by
the equation

(2.3) exp{2ika cos θn} = 1.

We assume that the angle of incidence θin is small.

3. Reformulation of the diffraction problem using a branched surface.
Apply the reflection principle to the problem. Cut the physical plane, on which ũ
is defined, along the walls of the waveguide. Obviously, the field is discontinuous on
the cuts. Reflect the physical plane with respect to one of the waveguide walls and
attach the shores of the cuts of the physical plane to those of the reflected copy. As
a result, the field becomes smoothly continued through the cuts, and a branch point
emerge instead of the scatterer. However, the resulting surface again contains two
cuts. Attach copies of the physical plane to each of them, and repeat this process
many times. As a result, obtain the surface with branch points of second order located
at the points x = ma, y = 0, m ∈ Z. A scheme of the surface obtained as the result
of this procedure is shown in Figure 3.1.

The next step is to transform the representation of the branched surface. Take
the same surface and make the cuts going from the branch points along the lines
x = ma, y < 0. The surface will be decomposed into a single plane having an infinite
number of cuts and a series of planes having a single cut each (see Figure 3.2).

Our consideration will be held on the surface decomposed as shown in Figure 3.2.
Denote the field on the upper sheet (with an infinite number of cuts) by ũi, and the
fields on the lower sheets by ũn, where n is the number of the sheet. The sheet
having number n is assumed to be connected with the upper sheet by the branch
point located at x = an, y = 0.

The upper sheet (in the figure) corresponds to the space inside the waveguide
(y > 0) and inside its continuation (y < 0). The lower sheets correspond to the space
outside the waveguide and its continuation, i.e., to x < 0 and x > a.

The formulation on the branched surface is equivalent to the initial formulation
with the waveguide, provided that the incident field chosen for the branched surface
is obtained from the initial field by corresponding reflections. This means that we
should put two incident plane waves on the upper sheet. Here, however, we prefer to
study a single plane wave as the incident wave. Namely, let the incident wave be a
plane wave coming along the upper sheet from positive infinity:

(3.1) ũi
in = exp{ik(x cos θin − y sin θin)},

where θin is small positive. There are no incident components on the lower sheets.
Formally, a complete solution of the initial problem can be obtained by adding a
mirror reflection with respect to the y-axis.

We are looking for the reflection coefficient R̃(θn; θin) and the diffraction coeffi-
cient D̃(θ; θin). The first value is defined as follows. The field on the upper sheet for
y > 0 can be represented as a series:

(3.2) ũi = ũi
in +

∑
n

R̃n(θn; θin) exp{ik(x cos θn + y sin θn)},
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Fig. 3.1. Branched surface.
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Fig. 3.2. An alternative representation of the branched surface.

where θn are not necessarily real. This relation can be treated as the definition of the
coefficients R̃(θn; θin). The coefficients R̃m,n = R̃(θn; θm) describe cross-scattering of
the modes by the open end of the waveguide.



1206 ANDREY V. SHANIN

Consider the field on the lower sheet having index 0. The far field of ũ0 can be
represented as a modulated field of a point source:

(3.3) ũ0(θ, r) =

√
k

2πr
exp

{
ikr − iπ

4

}
D̃(θ; θin) + O(eikrr−3/2),

where r is the distance between the origin and the observation point. This relation is
the definition for D̃. According to the position of the cut, angle θ in (3.3) takes values
from the segment (−π/2, 3π/2). The directivity D̃t of the field radiated by the open
waveguide in the physical formulation can be obtained from D̃ by adding a mirror
reflection:

(3.4) D̃t(θ, θin) = D̃(θ, θin) + D̃(π − θ, θin).

The directivity D̃t is studied only for −π/2 < θ < π/2. We assume that backward
scattering on the branched surface is negligibly small comparatively to the scattering
in the forward direction, so D̃t ≈ D̃.

Below we are finding approximations to the values R̃ and D̃.

4. Parabolic equation on the branched surface. We assume that the inci-
dent angle θin is small. Moreover, we are interested in the reflection and diffraction
coefficients for small scattering angles θ. In other words, the x-axis plays the role of
“optical axis” of the system, and we are studying only paraxial processes. Note that
we do not choose the axis of the waveguide, i.e., the y-axis, as the optical axis of the
system. The cause is that the most interesting case is the scattering of a mode close
to the cut-off state. Partial waves for such a mode travel almost normally to the walls
of the waveguide.

In this paraxial case the problem can be significantly simplified by using the
parabolic approximation. The idea of the parabolic equation is to look for the solution
ũ of (2.1) in the form

(4.1) ũ = eikxu(x, y),

where dependence of u on x is slow comparatively to that of the exponential term.
The expression (4.1) is substituted into (2.1), and the term containing the second
derivative of u on x is omitted. As a result, we get the parabolic equation

(4.2)
(

∂2

∂y2
+ 2ki

∂

∂x

)
u = 0.

A detailed review of the parabolic approximation can be found in [17].
Let us make here a rough estimation of the accuracy of our assumption. The

main error of the parabolic approximation is caused by broadening of the angular
spectrum as a result of diffraction by the edges. The amplitude of wave diffracted
to large angles is proportional to the area of a screen quite close to the wedge edge,
namely about a wavelength from the edge, i.e., ∼ k−1. At the same time, the area
responsible for the penumbral phenomena, which is of great importance in this case
and which is correctly described by the parabolic equation, is about the size of the
first Fresnel zone at the distance a. The size of this area is ∼ √

a/k. Thus, a ratio
describing the accuracy of the parabolic approximation is (ka)−1/2. This parameter
is small by the problem formulation.
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The incident wave has the following form:

(4.3) uin = exp
{
− ikθ2

in

2
x − ikθiny

}
.

The expression (4.3) can be obtained by using series approximations of the sine and
cosine functions in (3.1).

Corresponding approximation of (2.3) is given by

(4.4) θn =
√

2
(
1 − πn

ka

)1/2

, n = 0, 1, 2 . . . .

Since θin is small, mode indices n of the incident/reflected waves should be close to
ka/π. Note that θn are not necessarily real. Positive imaginary θn correspond to
inhomogeneous waves decaying in the y-direction.

A field on the branched surface can be described by boundary conditions on the
cuts, i.e., on the lines x = an, y < 0:

ui(an + 0, y) = un(an − 0, y) Ξ(−y) + ui(an − 0, y) Ξ(y),(4.5)

un(an + 0, y) = ui(an − 0, y) Ξ(−y) + un(an − 0, y) Ξ(y),(4.6)

where Ξ(y) is the Heaviside function

Ξ(y) =
{

1, y > 0,
0, y < 0.

Note that for the parabolic equation the waves can travel only from left to right, so
the boundary conditions are remarkably simple.

The reflection coefficient R̃ and diffraction coefficient D̃ are approximated by the
values R and D obtained from the parabolic problem. The expressions (3.2) and (3.3)
are substituted by

(4.7) ui = ui
in +

∑
n

R(θn; θin) exp
{
− ikθ2

n

2
x + ikθny

}

and

(4.8) u0(x, y) = g(x, y)(D(θ; θin) + O(1/x)), θ = y/x,

where g(x, y) is the Green’s function of an entire plane:

(4.9) g(x, y) =

√
k

2πx
exp

{
iky2

2x
− iπ

4

}
.

The angle θ in the parabolic approximation is the tangent of that in the exact formu-
lation. Since small angles are considered, there is no difference between the tangent
and the angle itself.

5. Edge Green’s function on the branched surface. Consider the branched
surface introduced above and parabolic equation (4.2) on it. Define a field v(x, y) on
this surface generated by a special “dipole” source located near the origin. The
source is constructed as follows. There are two point sources having strength equal to
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+1 and −1. The first one is located at the point (+0, 0) on the upper sheet, and the
second source is located at the point (+0, 0) on the lower sheet with index 0. There
are no other sources on the surface.

The components vi and v0 of v obey the following inhomogeneous equations:(
1

2ik

∂2

∂y2
+

∂

∂x

)
vi = δ(x − 0)δ(y),(5.1)

(
1

2ik

∂2

∂y2
+

∂

∂x

)
v0 = −δ(x − 0)δ(y).(5.2)

Here δ is the Dirac delta-function. Note that the field vi is rather sophisticated. It
exists on the upper sheet and has nonzero continuations to all lower sheets with indices
greater than 0. Conversely, the field v0 is trivial, and it exists only on the lower sheet
with index 0.

Function v(x, y) composed of the components vi and vn is the edge Green’s func-
tion of the problem. The reflection coefficient R and the directivity D will be expressed
in terms of this function.

It is easy to write an explicit expression for the edge Green’s function. Obviously,
v(x, y) ≡ 0 for all x < 0. For 0 < x < a

vi(x, y) = g(x, y),

where g is the Green’s function of a plane introduced in (4.9). Moreover, for all x > 0

v0(x, y) = −g(x, y).

Consider the upper sheet, i.e., the component vi. Let

x = an + Δx, n > 0, 0 < Δx ≤ a.

Then the explicit formula is as follows:

vi(x, y)(5.3)

=
∫ ∞

0

. . .

∫ ∞

0

g(a, y1) g(a, y2 − y1) . . . g(a, yn − yn−1) g(Δx, y − yn) dy1 . . . dyn.

All integrations are taken along the positive half-axis.
Now consider the field on one of the lower sheets, i.e., the component vn. Note

that vn(x, y) ≡ 0 for n < 0 or x < an, so consider n > 0 and x > an. Let

x = an + Δx, n > 0, Δx > 0.

Then

vi(x, y)(5.4)

=
∫ 0

−∞

∫ ∞

0

. . .

∫ ∞

0

g(a, y1) g(a, y2 − y1) . . . g(a, yn − yn−1) g(Δx, y − yn) dy1 . . . dyn;

i.e., all the integrals over y1 . . . yn−1 are taken along the half-line (0,∞), and the
integral over yn is taken along (−∞, 0).
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Introduce the directivities Si(θ), Sn(θ) of the edge Green’s function. The value
Si is related to the upper sheet, and the values Sn are related to the lower sheets.
Obviously, the far field of v should have the form of a modulated cylindrical wave
with the directivity as a modulation coefficient.

For the upper sheet, large positive x, and positive θ let

(5.5) vi(x, θx) = g(x, θx)Si(θ) + O(x−3/2).

For the lower sheet number n and for large positive (x − an) let

(5.6) vn(x, θ(x − an)) = g(x − an, θ(x − an))Sn(θ) + O((x − an)−3/2).

In (5.5) θ stands for y/x, and in (5.6) θ = y/(x − an). Note that the center of
the polar system for vn is chosen at the point (an, 0).

Since the set of the scatterers is infinite, we can expect that the asymptotic
expressions (5.5) will be uniform only for θ > ε for any small positive ε. For our
needs, however, it will be enough to choose ε such that ε � θin.

6. Embedding formula. Consider the problem with a plane wave incidence.
Apply the embedding operator to the total field u. The embedding operator has the
form

(6.1) H [u] =
(

∂

∂y
+ ikθin

)
u.

Consider the function w(x, y) = H [u]. This function has the following properties.
— It obeys the parabolic equation everywhere except the branch points (an, 0).

This property follows from the fact that the parabolic equation operator

L =
1

2ik

∂2

∂y2
+

∂

∂x

commutes with H . Thus, we can treat w as a wave field.
— The field w contains no wave components coming from infinity. This is because

the only component of u that comes from infinity, namely ui
in, is nullified by the

operator H .
Consider the behavior of w near the branch point (0, 0). Let

(6.2) ui(−0, 0) = C,

where C is an unknown value depending on θin. Note that u0(−0, y) ≡ 0. By applying
the operator H to the boundary conditions (4.5) and (4.6), we obtain

wi(+0, y) = Cδ(y) + wi(−0, y) Ξ(y),(6.3)

w0(+0, y) = −Cδ(y) + wi(−0, y) Ξ(−y).(6.4)

Substituting (6.3) and (6.4) into the parabolic equation we conclude that the
delta-functions can be treated as sources of the field; i.e., in the vicinity of the point
(0, 0) the components of w obey the following equations:

L[wi] = Cδ(x − 0)δ(y), L[w0] = −Cδ(x − 0)δ(y).
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Using the Floquet property we can derive similar relations for vicinities of all other
branch points. Namely, in the vicinity of the point (an, 0) the following equations are
valid:

L[wi] = C exp{−iankθ2
in/2}δ(x − an − 0)δ(y),(6.5)

L[wn] = −C exp{−iankθ2
in/2}δ(x − an − 0)δ(y).(6.6)

The sources at the branch points have the same dipole structure as that of the edge
Green’s functions introduced above.

Thus, w is a solution of the parabolic equation with known sources having no
components coming from infinity (i.e., w obeys a radiation condition). By applying
the uniqueness theorem, we conclude that the field is a linear combination of the fields
generated by point sources, i.e., a linear combination of the edge Green’s functions:

wi(x, y) = C

∞∑
m=−∞

exp{−ikamθ2
in/2}vi(x − am, y),(6.7)

wn(x, y) = C
∞∑

m=−∞
exp{−ikamθ2

in/2}vn−m(x − am, y).(6.8)

Relations (6.7) and (6.8) contain an unknown value C implicitly depending on
θin. The next step will be to express C in terms of v. Reciprocity is used for that.

A reciprocity theorem is valid for the parabolic equation, particularly, when it is
set on a branched surface. Let G(x, y; x′, y′) be the Green’s function of the surface.
The notation implies that source is located at the point (x′, y′), and the observation
point is (x, y). Both points belong to the upper sheet. The reciprocity relation enables
one to interchange the source and the observation point. Note that the direction of
propagation should be reversed also. In our case the most compact form of the
reciprocity relation is as follows:

(6.9) G(x, y; x′, y′) = G(−x′, y′;−x, y).

This relation can be easily checked by an explicit formula.
The reciprocity relation enables one to express C(θin) in terms of the directiv-

ity Si(θ). Namely, consider the point source of unit strength located at the point
(−x′, θinx

′) on the upper sheet (x′ is large and positive). This source produces a field
asymptotically close to the incident plane wave multiplied by g(x′, θinx′). Thus, the
field of this source taken not far from the origin is close to the total field produced by
an incident plane wave:

(6.10) G(x, y;−x′, θinx
′) ≈ g(x′, θinx′)ui(x, y).

Coefficient C can be calculated by finding the field at the edge (0, 0) and taking the
limit x′ → ∞:

(6.11) C = lim
x′→∞

G(0, 0;−x′, θinx
′)(g(x′, θinx′))−1.

Apply the reciprocity theorem and take into account that by definition vi(x, y) =
G(x, y; 0, 0):

(6.12) C = lim
x′→∞

vi(x′, θinx′)(g(X, θinX))−1.
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Finally, using (5.5), we obtain

(6.13) C = Si(θin).

Thus, the embedding formulae for the fields have the form

H [ui](x, y) = Si(θin)
∞∑

m=−∞
exp{−ikamθ2

in/2}vi(x − am, y),(6.14)

H [un](x, y) = Si(θin)
∞∑

m=−∞
exp{−ikamθ2

in/2}vn−m(x − am, y).(6.15)

Express the reflection coefficient R(θ; θin) using the embedding formula (6.14).
Let the angle of incidence θin and every angle of scattering θn belong to the set {θm}
determined by (4.4).

According to the Floquet theory, the field wi can be represented for y > 0 as a
series:

(6.16) wi(x, y) =
∑

n

Wn exp{−ikx θ2
n/2 + iky θn}.

By performing the Fourier transform, we obtain an expression for the coefficients:

(6.17) Wn =
1
a

∫ x0+a

x0

wi(x, y) exp
{

ikx θ2
n

2
− iky θn

}
dx

for arbitrary x0 and arbitrary y > 0.
Using (6.14) the last expression can be rewritten as

(6.18) Wn =
Si(θin)

a

∫ ∞

−∞
vi(x, y) exp

{
ikx θ2

n

2
− iky θn

}
dx.

A standard argument based on studying the values of the field far from the origin
and applying the stationary phase method connects the directivity Si of vi and the
Fourier transform of vi. In our case the link is as follows:

(6.19)
∫ ∞

−∞
vi(x, y) exp{ikx θ2

n/2 − iky θn}dx = θSi(θ).

By comparing the series (6.16) and (4.7) and by studying the action of the oper-
ator H on a plane wave, we find that

(6.20) Wn = ik(θn + θin)R(θn; θin).

Using (6.19) and (6.20), we obtain from (6.18)

(6.21) R(θn; θin) =
Si(θn)Si(θin)

ika (θn + θin)θn
.

This result agrees with the exact representation obtained by the Wiener–Hopf
method. Namely, (6.21) can be compared with equation (3.11.20) of [2]. Function
Si(θ) corresponds to (iγ + k)G+(iγ) in the notation of [2].
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This representation of the reflection coefficient has, in fact, a reciprocal form
(although this may not be clear from the first glance). A detailed study shows that
the reciprocity relation for the reflection coefficient has the form

(6.22) θnR(θn; θin) = θinR(θin; θn).

Studying the far-field asymptotics of (6.15) we get the expression for D:

(6.23) D(θ; θin) =
Si(θin)

ik(θ + θin)

∞∑
n=0

exp
{

ikanθ2
in

2

}
Sn(θ).

Here θ is arbitrary, i.e., not necessarily belonging to the set {θn}.
Formulae (6.21) and (6.23) are the main results of this section. In what follows

we are concentrating our efforts on finding the directivities Si(θ) and Sn(θ) of the
edge Green’s function v.

7. Derivation of the spectral equations. Apply operator

(7.1) K = x
∂

∂y
− iky

to the edge Green’s function v. The function K[v] has the following properties.
— It obeys parabolic equation (4.2), everywhere except the branch points, since

the operators K and L commute. Operator K is listed as one of the symmetry
operators for the parabolic equation in the monograph [18].

— It obeys the radiation condition; i.e., K[v] does not contain components coming
from infinity.

— Operator K nullifies the Green’s function of a free plane (4.9); therefore the
identities K[vi] ≡ 0 and K[v0] ≡ 0 are valid for x < a.

We are going to apply the uniqueness argument developed in the previous section.
According to this argument, K[v] is a wave field (i.e., a solution of the parabolic
equation) on the branched surface introduced above. Since there are no incident
components, the field is generated by a set of sources located at the branch points.
The next task is to reveal these sources.

The sources at the point (0, 0) are nullified by the operator, as follows from the
last property. The behavior of K[v] at the branch points (an, 0), n > 0, can be studied
by the method proposed above. The result is as follows:

L[K[vi]] = anCnδ(x − an − 0)δ(y),(7.2)

L[K[vn]] = −anCnδ(x − an − 0)δ(y),(7.3)

where we introduce the following notation:

(7.4) Cn ≡ vi(an − 0, 0), n = 1, 2, . . . ;

i.e., Cn are the values of the edge Green’s function at the branch points. The coeffi-
cients Cn play an important role in the study. They will be calculated later.

According to the uniqueness argument, the field K[v] can be written as the sum
of edge Green’s functions taken with the amplitudes defined by (7.2) and (7.3):

K[vi](x, y) = a

∞∑
m=1

mCmvi(x − am, y),(7.5)

K[vn](x, y) = a

∞∑
m=1

mCmvn−m(x − am, y).(7.6)
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Study the far-field asymptotics of (7.5) and (7.6). A direct check shows that the
operator K acts on Si as differentiation with respect to the angle θ:

(7.7) Si K−→ dSi

dθ
.

Note that the far field of the function vi(x − am, y) can be written as follows:

(7.8) vi(x − am, y) = g(x, y) exp{ikamθ2/2}Si(θ) + O(x−3/2), θ = y/x;

i.e., a shift along the coordinate x leads to multiplication of the directivity by an
exponential factor. Using (7.7) and (7.8), one can derive the following relation from
(7.5):

(7.9)
dSi(θ)

dθ
= a Si(θ)

∞∑
n=1

nCn exp
{

iknaθ2

2

}
.

This is the spectral equation for Si. It is an ordinary differential equation.
Derivation of the spectral equation for Sn is a bit more sophisticated. First, study

the far-field asymptotics of (7.6). Taking into account the shift of the origin, the result
is as follows:

(7.10)
d

dθ

[
exp

{
ikanθ2

2

}
Sn(θ)

]
= a exp

{
ikanθ2

2

} ∞∑
m=1

mCmSn−m(θ).

This relation taken for different n is a set of ordinary differential equations with
respect to an infinite number of unknown functions. Our aim is to split the equations
and solve them. For that, we make the next step, namely introduce a new variable

Ŝn(θ) = exp{ikanθ2/2}Sn(θ)

and rewrite (7.10) as

(7.11)
dŜn(θ)

dθ
= a

∞∑
m=1

mCm exp
{

ikamθ2

2

}
Ŝn−m(θ).

Note that (7.11) has a convolution structure with respect to the indices. Thus, it is
now possible to apply the Fourier method. Introduce the Fourier transforms

C̄(p; θ) = a

∞∑
m=1

mCm exp{ikamθ2/2 + ipm},

S̄(p; θ) =
∞∑

m=0

exp{ipm}Ŝm =
∞∑

m=0

exp{ikamθ2/2 + ipm}Sm.

According to the general properties of the Fourier transformation, (7.11) can be rewrit-
ten as

(7.12)
dS̄(p; θ)

dθ
= C̄(p; θ)S̄(p; θ),

i.e., as an ordinary differential equation for each fixed p.
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An inverse Fourier transformation can be used to find the values Sm. However,
according to embedding formula (6.23), we need to find the combination

(7.13)
∞∑

n=0

exp
{

ikanθ2
in

2

}
Sn(θ) = S̄(p∗; θ) for p∗ =

ka

2
(θ2

in − θ2).

The main results of this section are equations (7.9) and (7.12). They should be
solved (the second one for p defined by (7.13)), and the solutions should be substituted
into the embedding formulae (6.21) and (6.23).

There is an ambiguity in the definition of (7.12) since p∗ depends on θ according
to (7.13). A correct procedure is as follows. Equation (7.12) is solved for each fixed
real parameter 0 < p < 2π. Thus, S̄(p; θ) is found as a function of two arguments.
Then for each θ an appropriate value of p∗ is found and substituted into (7.13).

8. Solution of the spectral equations. To solve (7.9) and (7.12) one should
provide physically motivated boundary conditions. Since both equations are of first
order, each of them requires a single boundary condition.

Study the asymptotics of the unknown functions Si and S̄(p; θ) as θ → ±∞. Take
into account the terms having order O(1). Note that only direct rays going from one
of the sources to infinity produce terms of order O(1). Any diffracted ray gives a term
of order O(1/|θ|) or smaller.

For positive θ there is a single direct ray going from the origin along the upper
sheet and a single ray going along the lower sheet with index 0. Thus, we get boundary
conditions

Si(+∞) = 1,(8.1)

S̄(p, +∞) = −1.(8.2)

The first one will be used for solving (7.9) and the second one for (7.12).
A very important additional boundary condition can be obtained for S̄(p; θ) as

θ → −∞. Note that there are two direct rays: one which belongs to directivity S0

and another to S1 (see Figure 8.1). As a result, for large negative θ the asymptotics
are as follows:

S0(θ) = −1 + O(1/|θ|),(8.3)

S1(θ) = exp{−ikaθ2/2} + O(1/|θ|).(8.4)

All other Sn do not have terms of order O(1).
According to the definition of S̄(p; θ),

S̄(p; θ) = −(1 − eip) + O(1/|θ|),

and, finally,

(8.5) S̄(p;−∞) = −(1 − eip),

which is an additional boundary condition for (7.12). Below we use this condition to
find the coefficients Cn.
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Fig. 8.1. Direct rays for θ < 0 on the lower sheets.

The solutions of spectral equations (7.9) and (7.12) with boundary conditions
(8.1) and (8.2) are as follows:

Si(θ) = exp

{
−
√

πia

2k

∞∑
m=1

√
mCmerfc

(√
− ikma

2
θ

)}
,(8.6)

S̄(p; θ) = − exp

{
−
√

πia

2k

∞∑
m=1

√
mCmeipmerfc

(√
− ikma

2
θ

)}
,(8.7)

where erfc(z) is the complementary error function

(8.8) erfc(z) =
2√
π

∫ ∞

z

e−τ2
dτ.

Let us find the coefficients Cn. For this, calculate S̄(p,−∞) from (8.7) and
compare it with (8.5). Note that erfc(−∞) = 2. Thus,

(8.9) − exp

{
−
√

2πia

k

∞∑
m=1

√
mCmeipm

}
= −(1 − eip).

Taking the logarithm of (8.9) and using the relation

log(1 − eip) = −
∞∑

m=1

eipm

m

we obtain that

(8.10) Cn =
1
n

√
k

2πian
=

g(an, 0)
n

.

This result coincides with the expression obtained by Anis and Lloyd [19] and later
by Boersma [5, 20].
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These values can be substituted into (8.6) and (8.7) to get the solutions of the
spectral equation in a closed form. To simplify the final expressions, introduce the
normalized angles

(8.11) β =
√

ka θ, βin =
√

ka θin.

By substituting (8.6) and (8.7) into (6.21) and (6.23), we obtain

R(θ; θin) =
exp{si(β) + si(βin)}

iβ(β + βin)
,(8.12)

si(β) = −1
2

∞∑
n=1

erfc(
√−in/2β)

n
(8.13)

and

D(θ; θin) = −
√

a

k

exp{si(β) + s(β, βin)}
i(β + βin)

,(8.14)

s(β; βin) = −1
2

∞∑
n=1

exp
{

in(β2
in − β2)
2

}
erfc(

√−in/2β)
n

.(8.15)

Note that if both θ and θin belong to the set {θn} of the waveguide modes, then

s(β; βin) = si(β).

9. Solution analysis. The function s introduced above is Weinstein’s special
function U :

(9.1) s(α, β) = U(α, β2/(4π))

(after a correction of an obvious sign typo in the formula (B.22) of [1]). Thus, our
results can be compared with those of Weinstein. The results are the same.

Numerical computation of the function si(β) can be performed using a direct
summation of (8.13). The amount of terms should be taken sufficiently large. The
results are shown in Figure 9.1.

One can note the singular points on the graphs corresponding to

(9.2) βm =
√

4πm, m = 1, 2, . . . .

For these points the series (8.13) converges, but a similar series for the derivative of
the directivity diverges. That is why there are “sharp edges” on the graph.

Study the most important case, namely β � 1. An elementary analysis gives the
following asymptotics:

(9.3) si(β) = log(
√−2iβ) + ζ(1/2)

√
−i/(2π)β + O(β3),

where ζ is the Riemann zeta-function.
Let be θ = θin, and θin � 1. Substitute (9.3) into (6.21) to obtain the relation

(9.4) R(θin; θin) ≈ − exp
{
−0.824(1− i)

√
ka θin

}
,

which coincides with the known expression [1, 2]. Here we used the relation

ζ(1/2)√
π

≈ −0.824.
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Fig. 9.1. Numerical computation of si(b).

10. Conclusion. The problem of diffraction of a waveguide mode is studied in
the parabolic approximation. The axis of the parabolic equation is chosen perpendicu-
lar to the waveguide direction; i.e., we are focused on the modes with the propagation
constant being small compared to the wavenumber in the medium. The problems of
reflection of a wave mode and radiation from the waveguide into the open space are
studied.

The waveguide problem is transformed into a propagation problem on a branched
surface. The reflection principle is used for this.

The problem is treated by the method earlier developed for the Helmholtz equa-
tion. Two main steps are performed. First, embedding formulae (6.21) and (6.23)
are derived for the problem. As a result, the reflection coefficient and the directivity
become represented as combinations of the directivities related to the edge Green’s
function of the problem. Thus, the problem becomes reduced to finding the directiv-
ities of the edge Green’s function.

Second, spectral equations (7.9) and (7.12) are derived for the directivities of
the edge Green’s function. The spectral equations are homogeneous linear ordinary
differential equations with rather complicated coefficients. They contain unknown
parameters Cn, which are the values of the edge Green’s function at the edge points.
Fortunately, in our case there exists a compact representation (8.10) for Cn.

The solution of the spectral equations is given by the formulae (8.6) and (8.7).
The solution can be expressed in terms of Weinstein’s special function.

The main aim of the paper is to develop a framework of solving a wide range of
waveguide problems avoiding Wiener-Hopf method. It is shown that such a technique
can be developed using the embedding formula and the spectral equation.

Acknowledgments. The author is grateful to Professors V. M. Babich, M. A.
Lyalinov, M. M. Popov, and R. V. Craster and Dr. V. V. Zalipaev for useful discussions
and very valuable help.

REFERENCES

[1] L. A. Weinstein, The Theory of Diffraction and the Factorization Method, Golem Press,
Boulder, CO, 1969.

[2] R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, Macmillan,
New York, 1971.



1218 ANDREY V. SHANIN

[3] B. Noble, Methods Based on the Wiener-Hopf Technique, Pergamon Press, London, 1958.
[4] H. Y. Yee, L. B. Felsen, and J. B. Keller, Ray theory of reflection from the open end of a

waveguide, SIAM J. Appl. Math., 16 (1968), pp. 268–300.
[5] J. Boersma, Ray-optical analysis of reflection in an open-ended parallel-plane waveguide. I:

TM case, SIAM J. Appl. Math., 29 (1975), pp. 164–195.
[6] V. V. Zalipaev and M. M. Popov, Short-wave grazing scattering of a plane wave by a smooth

periodic boundary, I, Zap. Nauchn. Sem. Leningr. Otde. Mat. Inst. Steklov. (LOMI), 165
(1987), pp. 59–90 (in Russian).

[7] V. V. Zalipaev and M. M. Popov, Short-wave grazing scattering of a plane wave by a smooth
periodic boundary. II, Zap. Nauchn. Sem. Leningr. Otde. Mat. Inst. Steklov. (LOMI), 173
(1988), pp. 60–86 (in Russian).

[8] V. V. Zalipaev, Shortwave scattering by a diffraction echelette-grating, J. Math. Sci. (New
York), 102 (2000), pp. 4203–4219.

[9] A. G. Fox and T. Li, Resonant modes in a maser interferometer, Bell System Tech. J., 40
(1961), pp. 453–488.

[10] M. H. Williams, Diffraction by a finite strip, Quart. J. Mech. Appl. Math., 35 (1982), pp.
103–124.

[11] P. A. Martin and G. R. Wickham, Diffraction of elastic waves by a penny-shaped crack:
Analytical and numerical results, Proc. Roy. Soc. London Ser. A, 390 (1983), pp. 91–129.

[12] N. R. T. Biggs, D. Porter, and D. S. G. Stirling, Wave diffraction through a perforated
breakwater, Quart. J. Mech. Appl. Math., 53 (2000), pp. 375–391.

[13] C. Linton and P. McIver, Handbook of Mathematical Techniques for Wave-Structure Inter-
actions, Chapman and Hall, London, 2001.

[14] R. V. Craster, A. V. Shanin, and E. M. Doubravsky, Embedding formulae in diffraction
theory, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), pp. 2475–2496.

[15] A. V. Shanin and E. M. Doubravsky, Acoustical scattering at a gap between two orthogonal,
semi-infinite barriers: Coordinate and spectral equations, J. Engrg. Math., 59 (2007), pp.
437–449.

[16] A. V. Shanin, Diffraction of a plane wave by two ideal strips, Quart. J. Mech. Appl. Math.,
56 (2003), pp. 187–215.

[17] S. N. Vlasov and V. I. Talanov, The parabolic equation in the theory of wave propagation,
Radiophys. and Quantum Electronics, 38 (1995), pp. 1–12.

[18] W. Miller, Symmetry and Separation of Variables, Addison–Wesley, Reading, MA, 1977.
[19] A. A. Anis and E. H. Lloyd, On the range of partial sums of a finite number of independent

normal variates, Biometrika, 40 (1953), pp. 35–42.
[20] J. Boersma, On certain multiple integrals occurring in a waveguide scattering problem, SIAM

J. Math. Anal., 9 (1978), pp. 377–393.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


