
ОБЩАЯ ХАРАКТЕРИСТИКА ПРОБЛЕМЫ ШУМА И ВИБРАЦИИ

История вопроса — свидетельства актуальности проблемы имеются с древнейших времен (по меньшей мере, с 2400 г. до н.э.). XX век: первые количественные ограничения появились в 1930-е годы; особую актуальность проблема приобрела в конце 1950-х и в 1960-е годы в гражданской авиации после появления реактивных самолетов.

Исследования последних десятилетий, общеэкологический уровень проблемы — от шума в первую очередь страдают центральная нервная и сердечнососудистая системы, а орган слуха поражается значительно позже; человек, как правило, субъективно недооценивает негативное воздействие шума и вибраций; необходимо существенное ужесточение ограничений (норм) на шум и вибрацию; проблема приобрела общеэкологический характер. **Механическая и акустическая мощность машин и механизмов** (с ростом механической мощности растет эффективность преобразования механической мощности в акустическую).

Шкалы и единицы измерения шума

Большой диапазон воспринимаемого человеком звукового давления (изменение на 12-13 порядков по отношению к слуховому порогу) и акустической мощности, закон Вебера—Фехнера → логарифмические шкалы

Уровень шума, или уровень звуковой мощности

 $L = 10 lg (I/I_o)$ ε ∂E

 $(I-интенсивность звукового сигнала в точке приема, <math>I_o=10^{-12}\ Bm/m^2-$ интенсивность, соответствующая среднестатистическому порогу слухового восприятия человека, т.н. «пороговая» акустическая интенсивность) — основное определение

(NB! по отношению к этой величине термин «уровень звука» использовать нельзя, этот термин используется только для уровня по шкале А в дБА, см. ниже)

 $L = 20 \, lg(p/p_o) \, в \, d \delta - \phi$ ормула, следующая из основного определения L, для дальней волновой зоны источника, где $I \sim p^2$ (p - cpedhekadpatuuhoe значение звукового давления в точке приема звукового сигнала, $p_o = 2 \cdot 10^{-5} \, \Pi a - cpedhekadpatuuhoe$ значение звукового давления, соответствующее порогу слышимости, т.е. «пороговое» акустическое давление)

Частотный диапазон слуха

Вид	Диапазон (Гц)
лягушка	50 - 10000
собака	15 - 50000
кошка	60 - 65000
птица	250 - 21000
рыба	150 - 150000
летучая мышь	1000 - 120000
человек	20 - 20000

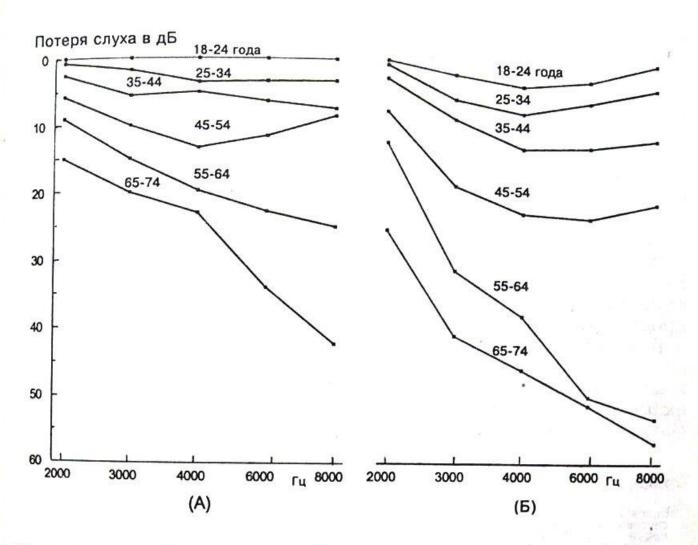


Рисунок 12. Потеря слуха (в дБ) в различные возрастные периоды в диапазоне частот от 2000 до 8000 Гц. А: потеря слуха у женщин; Б: потеря слуха у мужчин (Hinchcliffe, 1959, S. 306).

Эффект маскировки

Если источники звука некогерентны, то интенсивность суммарного поля определяется суммой интенсивностей, создаваемых отдельно взятыми источниками. Предположим, что уровень, создаваемый одним из некогерентных источников, равен L, а уровень, создаваемый вторым источником, отличается от L на величину ΔL . Тогда уровень L_{Σ} в суммарном поле, как легко убедиться, может быть определен по формуле

$$L_{\Sigma} = L + \delta L_{\Sigma}$$
, где $\delta L_{\Sigma} = 10 \lg (1 + 10^{\Delta L_{1} 10})$.

Значения величины δL_{Σ} в зависимости от ΔL приведены на рис. 3. При $\Delta L = 0$, т. е. при одинаковой интенсивности шума, создаваемого по отдельности каждым из двух источников, получаем: $L_{\Sigma} = L + 3$ дБ. Если же $|\Delta L| > 5 \div 10$ дБ (один из источников создает интенсивность, заметно ме́ньшую, чем второй), то уровень суммарного шума будет практически равен уровню шума, создаваемого более шумным источником.

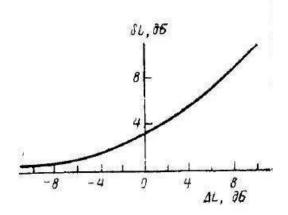
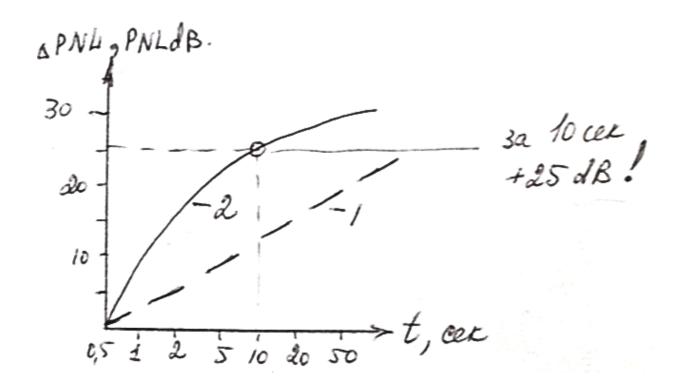



Рис. 3. Зависимость величины δL от разности уровией шума ΔL отдельно взятых источииков

Практический вывод: прежде всего надо уменьшать шум наиболее шумного источника.

Влияние продолжительности шума на оценку его раздражающего воздействия

- 1 кривая по принципу равной энергии удвоение времени соответствует +3 дБ
- 2 усреднение по экспериментальным данным с испытуемыми

PNL — уровни воспринимаемого шума (Perceived Noise Level — K.D.Kryter, 1960), применяемые в авиационной акустике; единицы измерения — PN дБ

Частотные полосы измерения шума и вибрации

Использование каждого из указанных типов полос имеет свои преимущества и недостатки. Измерения в широкой полосе частот позволяют быстро определить интегральный уровень шума, создаваемого источником, но не дают никакой информации о спектральном составе шума. Использование узких полос позволяет получить детальную информацию о спектре шума, однако требует большего времени для измерений и последующей обработки результатов для получения значений интегральной интенсивности и интегральпого уровня шума. Октавные, 1/2- и 1/3-октавные полосы представляют собой компромиссный вариант и применяются поэтому досгаточно широко. Удобство использования этих полос заключается также в гом, что они хорошо соответствуют восприятию частоты человеком: как и при оценке громкости звукового сигнала, человек оценивает изменение частоты в соответствии с логарифмической, а не с линейной шкалой, т. е. восприятие изменения частоты определяется не абсолютным, а относительным изменением.

Положение октавных, 1/2-октавных и 1/2-октавных полос на оси частот задается указанием их центральной частоты. Центральная частота при этом понимается как среднегеометрическая из значений верхней и нижней частот полосы. Опорной для выбора центральных частот служит частота 1000 Гц. Центральная f_{ii} , верхняя f_{ii} и нижняя f_{ii} частоты указанных полос связаны между собой следующим образом:

Октава	1/2 ОКТАВЫ	¹ з октавы
$\frac{f_n}{f_n} = 2$	$\frac{f_n}{f_n} = 2^{1/2} \simeq 1.41$	$\frac{f_0}{f_{\rm H}} \approx 2^{1/3} \simeq 1,26$
$u = V \overline{f_{\bullet f_{\rm H}}} = V \overline{2} f_{\rm H} \simeq 1.41f$	$f_{\rm H} = 1 \cdot 2 \cdot f_{\rm H} \simeq 1.19 f_{\rm H}$	$f_{\rm u} = \sqrt[6]{2} f_{\rm H} \simeq 1.12 f_{\rm H}$

Шкалы A, B, C («уровень звука» - только по шкале A в дБА). Эквивалентный уровень звука (для нестационарного шума)

В практике шумовых измерений наиболее часто применяются $^{1}/_{3}$ -октавные и октавные полосы. Стандартные центральные часто-ты $^{1}/_{3}$ -октавных полос имеют следующие значения в Гц (центральные частоты октавных полос, совпадающие с каждой третьей центральной частотой $^{1}/_{3}$ -октавных полос, выделены): 31,5; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500 и т. д.

Уровни по «линейной» шкале децибелов могут быть измерены в любой из указанных выше полос. Наряду с этим в акустике существуют другие шкалы, в которых уровень определяется также в децибелах, однако лишь в определенных частотных полосах и с

учетом частотной (или иной) коррекции.

Примером таких шкал являются шкалы А, В и С, используемые в шумомерах — приборах для измерения уровня шума. Введение этих шкал обусловлено необходимостью амплитудно-частотной коррекции принимаемого шума для учета субъективного характера восприятия звука человеком. Как известно (см., например, [7]), звуки одинаковой интенсивности, но разной частоты воспринимаются как различные по громкости. На рис. 4 представлены кривые равной громкости, полученные фирмой «Робинсон и Дэдсон» и показывающие, какой уровень должен иметь звук определенной частоты, чтобы он производил впечатление такой же громкости, как и звук на частоте 1000 Гц, имеющий уровень, указанный на рисунке в вертикальном столбце над значением частоты 1000 Гц. Из приведенных кривых следует, что наибольшую чувствительность слуховой аппарат человека имеет в области частот 3÷5 кГц, наименьшую — в области низких частот, причем по мере увеличения уровня звука частотная характеристика чувстви-

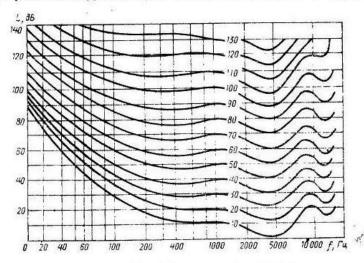


Рис. 4. Кривые равной громкости

тельности слухового аппарата несколько сглаживается. Кривые равной громкости были использованы при создании шкал А, В и С для формирования соответствующих этим шкалам амплитудно-частотных характеристик шумомеров: шкала А — для низкого уровня шума 10 55 дБ), B - для среднего (55-85 дБ)С — для высокого уровня (ботее 85 дБ). Частотные характеристики шкал А, В и С приветены на рис. 5. они представляют по существу частотные характеристики среднестатистического слухового аппарата челове-

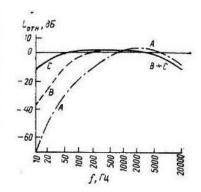


Рис. 5. Частотные характеристики А. В. С шумомера

ка при разных уровнях шума. Шкалы A, B и C применяются для интегральной оценки громкости шума во всем диапазоне слышимых человеком частот, в ограниченных же октавных, усоктавных, «тональных» полосах они не используются. Единицы измерений в тих шкалах обозначаются соответственно дБ(A), дБ(B) и дБ(C) (или дБA, дБB, дБC), а уровни шума — L_A , L_B , L_C , B последние годы шкалы B и C практически вышли из употребления, так как выяснилось, что шкала A достаточно хорошо соответствует субъективному восприятию шума независимо от его уровня. Уровень L_A получил в настоящее время название уровня звука [8].

На основе шкалы А разработан ряд параметров, аналогичных по смыслу уровню звука и служащих для оценки отдельных локализованных во времени шумовых событий и шумового режима в течение какого-либо времени [8]. В качестве основной величины при построении таких параметров используется эквивалентный уровень звука, который представляет собой значение уровня звука по шкале А для постоянного во времени шума, который в пределах времени измерений имеет такое же среднеквадратичное значение звукового давления, что и измеряемый переменный во времени шум:

$$L_{\text{Ae4}} = 10 \, \text{lg} \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{p_A^2(t)}{p_0^2} dt \right],$$

где p_1 — текущее среднеквадратичное значение звукового давления измеряемого шума с учетом коррекции по частотной характеристике $A,\ (t_2-t_1)$ — продолжительность воздействия шума.

Еще одним примером шкал, применяемых для оценки шума, являются шкалы, принятые в авиациинной акустике [9: 10]. Система критериев оценки шума в авиации является на сегодняшний день наиболее разработанной из всех вариантов отраслевых кри-

Шкала уровней вибрации

Методы оценки воздействия вибрации разработаны в гораздо меньшей степени, чем шумовые критерии. Во многих случаях вибрацию характеризуют лишь амплитудами смещения, скорости или ускорения колеблющегося объекта исследования. Применяются и логарифмические шкалы. При измерениях колебательной скорости используют уровни скорости

$$L_{\nu} = 20 \lg \left(\frac{\nu_{\rm rms}}{\nu_0} \right) [\partial B],$$

где $v_{\rm rms}$ — среднеквадратичное значение скорости колеблющегося объекта, $v_0 = 5 \cdot 10^{-8}$ м/с (это значение соответствует эффективному значению колебательной скорости в плоской волне в воздухе с эффективным значением звукового давления $\rho_0 = 2 \cdot 10^{-5}$ Па, соответствующим порогу слышимости).

Уровень вибрационного ускорения определяется формулой $L_u=20\lg\ (a_{\rm rms}/a_0)$. где $a_{\rm rms}$ — среднеквадратичное значение ускорения. $a_0=3.14\cdot 10^{-4}\ {\rm m/c^2}$. Аналогичным образом определяется и уровень вибрационного смещения: $L_y20\lg\ (y_{\rm rms}/y_0)$, где $y_{\rm rms}$ — среднеквадратичное значение смещения, $y_0=8\cdot 10^{-12}\ {\rm m}$. Значения a_0 и y_0 соответствуют ускорению и смещению на частоте 1000 Гц при значении колебательной скорости $v_0=5\cdot 10^{-8}\ {\rm m/c}$.

Между уровнями L_v . L_a и L_y существуют соотношения $L_y = L_v + 60 - 20 \lg f$. $L_a = L_v - 60 + 20 \lg f$. где f — частота в Γ ц.

Нормирование шума и вибрации – санитарное и техническое

«Предельные спектры» (ПС): от ПС-25 до ПС-130

Большое значение для сиижения шума и вибрации нмеет рагработка научно обоснованных ограничений на шумовые характ ристики и вибрацию — нормирование шума и вибрации. В наст ящее время различают два вида нормирования: санитарное (уст новление норм на шумовые характеристики рабочих мест или ме отдыха) и техническое (ограничение допустимых уровней шума вибраций, создаваемых различными машинами). При санитарно иормировании отраничивается общий шум, воздействующий на ч ловека независимо от характера и количества источников шум Технические же нормы устанавливаются с учетом иазначения и у ловий использования машины, единообразных технических ног на шум и вибрацию поэтому не существует.

В зависимости от характера трудовой деятельности или ви машины, создающей шум и вибрацию, разработаны различные о и техиические нормы, в некоторых случаях значитель отличающиеся друг от друга (см., например, [8—10]). Междун родной организацией по стандартизации (ISO) для нормирован шума рекомендовано семейство предельных спектров (ПС), по

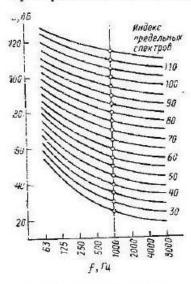


Рис. 25. Предельные спектры

создании которых учтены криве равной громкости слухового апп рата человека [9; 66] (рис. 25 Нормирование с использование предельных спектров заключает в требовании, чтобы спектр шум измеренный в дБ в стаидарти октавных полосах, не превыш заданного ПС (номер ПС опред ляется его уровнем в октавной п лосе с центральной частотой 1000 Га В некоторых случаях рекомендуе ся дополиять нормирование с пользованием ПС ограничением интегральный уровень шума, опр деляемый по шкале дБ (А).

Следует отметить, что в ря случаев отраслевые нормы на шне ограничиваются использовани ПС и уровней в дБ(A), а нос весьма детально разработаниый? рактер (примером могут служить нормы шума, разработанные в гражданской авиации [9—11]).

В последнее десятилетие установлены также нормы на шум в

ультра- и инфразвуковом диапазонах частот [8].

Нормирование вибрации осуществляется по уровню виброскорости (в дБ относительно 5.10-8 м/с) в 1/3-октавных (с центральными частотами от 0,8 до 80 Гц) и октавных (от 1 до 63 Гп) полосах. Допустимые уровин зависят от частоты и вида (категории) вибрации. В настоящее время различают шесть категорий общей (т. е. воздействующей на весь организм человека) вибрации: 1 вибрация транспортных средств при движении по местности; 2вибрация транспортно-технологических средств при движении по специально подготовленным поверхностям производственных помешений, площадок и горных выработок; За — вибрация на постоянных рабочих местах в производственных помещениях предприятий; 36 — вибрация в служебных помещениях на судах; 38 — вибрацня на рабочих местах на складах, в столовых, бытовых помещениях предприятий, где иет машин, генерирующих выбрацию: 3г — на рабочих местах в помещеннях для работников умственного труда. Существуют также нормы на локальную вибрацию (воздействующую, например, на рабочих, применяющих ручной меканизированный инструмент), причем онн установлены в более широком диапазоне частот по сравнению с общей вибрацией: в третьоктавных полосах с центральными частотами от 6,3 до 1250 Гц и в октавных полосах с центральными частотами от 8 до 1000 Гц (см., например, [13]).

Нормы на шум и вибрацию периоднчески пересматриваются, причем наблюдается устойчнвая тенденция к их постепенному ужесточению.

Иногда нормирование по ПС дополняется ограничениями на уровень звука.

Например, в салонах пассажирских самолетов шум должен быть не выше ПС-80 и L_A =85 дБА, в кабинах экипажей - не выше ПС-75 и L_A =80 дБА.

Общая ситуация, актуальность проблемы

Количество людей, подверженных повышенному шуму (более 55 дБА):

Вид транспорта	EC	РФ
Автомобильный	~ 210 млн	~ 60-65 млн
Железнодорожный	35 млн	8-10 млн
Воздушный	8-10 млн	1,5-2 млн

Текущая ситуация в РФ

Необходимы, в частности, общегосударственный закон о шуме, внесение шума в систему отчетной документации природоохранных организаций, реальное регулирование бытового шума, разработка шумовых карт в городах и в окрестностях аэропортов, разработка системы штрафов за повышенный шум, создание шумовых технических регламентов в целом ряде отраслей, ограничение новой жилой застройки вблизи аэропортов, устранение противоречий в нормативных актах по шуму, применение уже хорошо разработанных мер по снижению шума и вибрации (шумопоглощающий асфальт, акустическое шлифование и вибродемпфирование рельсов, правильная установка качественных шумозащитных экранов и др.).

Литература

- 1. Кравчун П.Н. Генерация и методы снижения шума и звуковой вибрации. М.: Издательство Моск. ун-та, 1991.
- 2. Колесников А.Е. Шум и вибрация. Л.: Судостроение, 1988.
- 3. Шик А. Психологическая акустика в борьбе с шумом (пер. с нем.). СПб.: БГТУ, 1995.