Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» физический факультет

V	TE	RFI	ж	ПΔ	Ю
У	IL	$^{\rm LI}$	ΊЛ.	$\mathcal{L}P$	\mathbf{v}

И.о. декана физического факультета МГУ, профессор, д.ф.-м.н.

/ В.В. Белокуров / «____» ____20____г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Нелинейные и активные акустические метаматериалы

Nonlinear and Active Acoustic Metamaterials

(1.3.7 Акустика)

Уровень высшего образования:

подготовка кадров высшей квалификации

Рабочая программа дисциплины разработана в соответствии с Приказом по МГУ от 24 ноября 2021 года № 1216 «Об утверждении Требований к основным программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемые Московским государственным университетом имени М.В.Ломоносова»

1. Краткая аннотация.

Нелинейные и активные акустические метаматериалы

Целью данного спецкурса является обзор современного состояния акустики нелинейных и активных акустических метаматериалов. Рассматриваются способы классификации нелинейных акустических метаматериалов, основные И активных параметры, характеризующие рассматриваемые метаматериалы. Рассматриваются возможности настройки параметров активных акустических метаматериалов. Особое внимание уделяется знакомству с результатами экспериментов и применению нелинейных и активных акустических метаматериалов.

- 2. Уровень высшего образования подготовка кадров высшей квалификации.
- 3. Научная специальность: 1.3.7 Акустика
- 4. Место дисциплины (модуля) в структуре Программы аспирантуры: Вариативная часть ООП. Факультатив.
- 5. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины составляет 3 зачетные единицы, всего 108 часов, из которых 40 часов составляет контактная работа аспиранта с преподавателем, 36 часов занятия лекционного типа, 4 часа мероприятия текущего контроля успеваемости и промежуточной аттестации), 68 часов составляет самостоятельная работа учащегося.

6. Входные требования для освоения дисциплины (модуля), предварительные условия.

Необходимы знания общей физики в объеме курсов, преподаваемых на физических специальностях классических университетов, полученных на предыдущих уровнях высшего образования.

7. Содержание дисциплины (модуля), структурированное по темам

	Всего	В том числе								
	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа обучающегося, часы из них		
		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточн ой аттестации	Всего	Выполнение домашних заданий	Подготовка к коллоквиумам	Всего
Тема 1. Акустическая нелинейность в твердых телах. Типы нелинейности.	7	2					2	5		5
Тема 2. Структурная нелинейность на примере контакта Герца. Нелинейное взаимодействие. Нелинейное уравнение состояния.	8	2					2	6		6
Тема 3. Понятие метаматериала. Краткий исторический экскурс. Типы метаматериалов. Понятие акустического метаматериала. Способы классификации акустических метаматериалов.	7	3		3			3	4		4

Тема 4. Распространение волн в периодических структурах. Двумерная решетка. Зоны в двумерных решетках. Парциальные волны и Брэгговское отражение.	7	3			3	4	4
Тема 5. Распространение волн в периодических структурах. Трехмерные решетки. Полосы пропускания в трехмерных структурах	7	3			3	4	4
Тема 6. Активные акустические метаматериалы. Механизмы настройки: механический, пьезоэлектрический, магнитный/электрический, термический.	7	3			3	4	4
Тема 7. Активные пьезоэлектрические акустические метаматериалы (АМ). Активный пьезоэлектрический АМ с настраиваемой эффективной плотностью. Активный пьезоэлектрический АМ с настраиваемым модулем упругости.	7	3			3	4	4
Текущая аттестация - коллоквиум	2			2	2		
Тема 8. Нелинейные акустические метаматериалы.	7	4			4	3	3

Классификация, типы, особенности.							
Тема 9. Сверхнизко- и сверхширокополосные нелинейные акустические метаматериалы. Локальнорезонансный механизм нелинейных акустических метаматериалов. Запрещенные зоны Брэгга. Одномерные и двумерные нелинейные акустические материалы.	7	3			3	4	4
Тема 10. Распространение упругих волн в нелинейных метаповерхностях. Волны Рэлея. Эффекты нелинейной силы взаимодействия и дисперсионные потери энергии волн Рэлея.	7	2			2	5	5
Тема 11. Акустический диод. Описание, принцип работы, волновое уравнение. Классификация акустических диодов.	8	2			2	6	6
Тема 12. Дуальные метаматериалы – фотон-фононные (фоксоны) и др.	7	2			2	5	5
Тема 13. Мягкие и пористые активные акустические метаматериалы.	8	2			2	6	6

Тема 14. Применение акустических активных и нелинейных метаматериалов.	10	2			2	8	8
Промежуточная аттестация – зачёт.	2			2	2		
Итого	108				40		68

8. Образовательные технологии.

Используемые формы и методы обучения: лекции и самостоятельная работа аспирантов.

При проведении лекционных занятий преподаватель использует при необходимости аудиовизуальные, компьютерные и мультимедийные средства обучения, а также демонстрационные и наглядно-иллюстрационные (в том числе раздаточные) материалы.

Занятия по данной дисциплине проводятся с привлечением необходимых Интернет-ресурсов.

9. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

10. Ресурсное обеспечение:

Перечень основной литературы:

- 1. Бриллюэн, Л., Пароди, М. «Распространение волн в периодических структурах» // М.: Изд-во иностранной литературы, 1959.
- 2. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials A review. Guosheng Ji, John Huber. Applied Materials Today 26(4):101260, 2021.
- 3. Sanjay Kumar and Heow Pueh Lee. Recent Advances in Active Acoustic Metamaterials International Journal of Applied Mechanics. Vol. 11, No. 8 (2019) 1950081
- 4. Sanjay Kumar and Heow Pueh Lee. Recent Advances in Active Acoustic Metamaterials International Journal of Applied Mechanics. Vol. 11, No. 8 (2019) 1950081
- 5. Fang, X., Wen, J., Bonello, B. et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat Commun 8, 1288 (2017).
- 6. Зарембо Л.К., Красильников В.А. Введение в нелинейную акустику. М.: Наука, 1966.
- 7. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989.

Перечень дополнительной литературы:

- 1. Бреховских Л.М. "Волны в слоистых средах" // М.: Наука, 1973.
- 2. Rakesh Kumar, Manoj Kumar, Jasgurpreet Singh Chohan, Santosh Kumar. Overview on metamaterial: History, types and applications. 2021 Materials Today Proceedings 56(11)
- 3. Wael Akl and Amr Baz. Multi-cell Active Acoustic Metamaterial with Programmable Bulk Modulus. Journal of Intelligent Material Systems and Structures 2010; 21; 541;
- 4. Liu, D.; Hao, L.; Zhu, W.; Yang, X.; Yan, X.; Guan, C.; Xie, Y.; Pang, S.; Chen, Z. Recent progress in Resonant Acoustic Metasurfaces. Materials 2023, 16, 7044.
- 5. Aditya Nanda, and M. Amin Karami. One-way sound propagation via spatio-temporal modulation of magnetorheological fluid. The Journal of the Acoustical Society of America 144, 412 (2018).

Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости):

- 1. Сайт журнала «Акустический журнал» <u>http://www.akzh.ru/</u>
- 2. Сайт журнала «Техническая акустика» http://www.ejta.org/ru
- Описание материально-технической базы.

Занятия проводятся в учебной аудитории, оснащенной необходимым учебным оборудованием для проведения лекционных и семинарских занятий.

11. Язык преподавания – русский

12. Преподаватели:

д.ф.-м.н., профессор Коробов Александр Иванович, e-mail: aikor@mail.ru, тел.: 8(495)9391821;

к.ф.-м.н., доцент Одина Наталья Ивановна, e-mail: niodina@mail.ru, тел.: 8(495)9391821;

к.ф.-м.н. н.с. Ширгина Наталья Витальевна, e-mail: natalia.shirgina@gmail.com, тел.: 8(495)9391821.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы домашних заданий:

- 1. Рассчитать собственные частоты для одномерной периодической решетки.
- 2. Вывести уравнение состояния для одномерной цепочки шаров, взаимодействующих по закону Герца.
- 3. Применить метод разложения по плоским волнам для расчета зонной структуры для трехмерной периодической структуры.
- 4. Применить метод конечных элементов для расчета зонной структуры метаматериала.

Вопросы для промежуточной аттестации – зачета

- 1. Опишите способы классификации акустических метаматериалов.
- 2. Охарактеризуйте активные акустические материалы, их типы и способы настройки.
- 3. Опишите локально-резонансный механизм работы нелинейных акустических метаматериалов.
- 4. Опишите механизм распространения волн в нелинейных метаповерхностях.
- 5. Опишите принцип работы акустического диода.
- 6. Охарактеризуйте основные возможности применения акустических метаматериалов.

Методические материалы для проведения процедур оценивания результатов обучения

Зачет проходит по билетам, каждый из которых включает три вопроса. Уровень знаний аспиранта по каждому вопросу оценивается на «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». В случае если на все вопросы был дан ответ, оцененный не ниже чем «удовлетворительно», аспирант получает общую оценку «зачтено».

Шкала оценивания знаний, умений и навыков

Результат	Критерии оценивания знаний, умений и навыков								
освоения									
дисциплины	2/	3/	4/	5/					
	не зачтено	зачтено	зачтено	зачтено					
Знания	Отсутствие знаний	Фрагментарные	Общие, но не	Сформированные					
	принципов работы	знания принципов	структурированн	систематические					
	нелинейных и	работы	ые знания	знания принципов					
	активных	нелинейных и	принципов	работы					
	акустических	активных	работы	нелинейных и					
	метаматериалов	акустических	нелинейных и	активных					

		метаматериалов	активных	акустических
		Metamatephanob	акустических	метаматериалов
			метаматериалов	метаматерналов
Умения	Отсутствие умений	В целом	В целом	Успешное и
у мения	•			
	применять знания о	успешное, но не	успешное, но	систематическое
	принципах работы	систематическое	содержащее	умение применять
	нелинейных и	умение применять	отдельные	знания о
	активных	знания о	пробелы умение	принципах
	акустических	принципах	применять знания	работы
	метаматериалов	работы	о принципах	нелинейных и
		нелинейных и	работы	активных
		активных	нелинейных и	акустических
		акустических	активных	метаматериалов
		метаматериалов	акустических	
			метаматериалов	
Навыки	Отсутствие	Наличие	В целом,	Сформированные
	навыков (владений,	отдельных	сформированные	навыки
	опыта)	навыков (наличие	навыки	(владения),
	решения	фрагментарного	(владения), но	применяемые при
	научных задач в	опыта) решения	используемые не	решении задач
	области принципов	научных задач в	в активной форме	В
	работы нелинейных	области	для решения	области
	и активных	принципов	научных задач в	принципов
	акустических	работы	области	работы
	метаматериалов	нелинейных и	принципов	нелинейных и
		активных	работы	активных
		акустических	нелинейных и	акустических
		метаматериалов	активных	метаматериалов
		1	акустических	1
			метаматериалов	