Рабочая программа дисциплины

1. Название дисциплины: Динамика сплошных сред

2. Лектор

2.1. к. ф.-м. н., доцент Маков Юрий Николаевич, кафедра акустики, yuri_makov@mail.ru, тел. +7(495)939-29-43.

3. Аннотация дисциплины.

Являясь фактически первой частью двухсеместрового учебного комплекса (второй частью является курс следующего семестра – «Акусто-гидродинамические явления в сплошных средах»), данная учебная дисциплина призвана дать магистрам, обучающимся по программе «Физическая и прикладная акустика», достаточно полные и систематизированные знания по использованию концепции (модели, приближения) сплошной среды для описания динамики (с точки зрения движения одних элементов среды относительно других) различных реальных вещественных сред с акцентом на акустические явления и процессы; т.е. материал этой дисциплины с учетом некоторой специфики физического образования (в отличие от механико-математического) отчасти соответствует традиционной дисциплине «Механика сплошных сред (MCC)», которая в некотором адаптационном виде входит в набор дисциплин по выбору на бакалаврском цикле обучения, однако предполагает существенно более глубокий уровень изложения, а также ориентацию на задачи физической и прикладной акустики. Данный курс демонстрирует единую основу (уравнения модельной (абстрактной) сплошной среды) и единую схему (с использованием характерных для реальной среды определяющих соотношений) получения математического описания (т.е. соответствующей системы дифференциальных уравнений) той или иной реальной среды (жидкой, упруго-твердой и др.). В настоящее время концепция (модель) «сплошной среды», беря начало от применения к описанию и анализу классических текучих и твердоупругих сред и получив дальнейшее развитие в новых модельных представлениях, является эффективным научным «инструментом» многих современных дисциплин и направлений (напр. физическое материаловедение, геофизика, динамика космологических структур (в т.ч. галактик), биофизика, нанотехнологии и многое другое). Особо следует отметить базовое учебнонаучное значение динамики сплошной среды для дисциплин акусто-физического профиля магистерской программы «Физическая и прикладная акустика».

4. Цели освоения дисциплины.

Освоение студентами дисциплины «Динамика сплошной среды» предполагает достижение основных целей: а) получение навыков в использовании математического аппарата (полевое описание, решение дифференциальных уравнений и т.п.) и характерных методов в описании и анализе динамики различных вещественных сред, б) знакомство с основными моделями МСС применительно к различных по своим реологическим свойствам средам (текучие, упруготвердые, вязкоупругие), На основе усвоения теоретического материала должно быть выработано умение использовать его для решения типичных задач физической и прикладной акустики.

5. Задачи дисциплины.

Задачами курса «Динамика сплошной среды» являются: а) показ и объяснение универсальности и широких возможностей модели сплошной среды для описания динамики вещественных сред с различными реологическими свойствами, различной структуры и с различными внутренними и внешними масштабами, б) «оборотной» стороной по отношению пункту (а) является демонстрация студентам большого разнообразия в специфике динамических свойств, проявления нелинейности и других характерных особенностей для сред различной природы, строения и т.п., в) дать студентам ориентацию в подходах и методах практического использования методов МСС для решения характерных задач физической и прикладной акустики.

6. Компетенции.

6.1. Компетенции, необходимые для освоения дисциплины.

М-ОНК-2; М-ИК-2.

6.2. Компетенции, формируемые в результате освоения дисциплины.

М-ОНК-2; М-ИК-2; М-ИК-3; М-ПК-1; М-ПК-2; М-ПК-3; М-ПК-5; М-ПК-6; М-ПК-8;М-СПК-10.

7. Требования к результатам освоения содержания дисциплины

В результате освоения дисциплины студент должен знать основные уравнения (с их характерными особенностями), используемые для описания динамики «классических сред» - жидких текучих и упруго-твердых; уметь использовать вышеуказанные уравнения для постановки и рассмотрения характерных задач МСС; активно владеть основными сведениями и методами МСС при интерпретации характерного динамического поведения «классических» сред.

8. Содержание и структура дисциплины.

Рид поботу		Семестр				
Вид работы	1	2	3	4	Всего	
Общая трудоёмкость, акад. часов	72				72	
Аудиторная работа:	36				36	
Лекции, акад. часов	18				18	
Семинары, акад. часов	18				18	
Лабораторные работы, акад. часов						
Самостоятельная работа, акад. часов	36				36	
Вид промежуточной аттестации (зачёт, зачёт с оценкой,	экз.				экз.	
экзамен)						

ыта			Структура и содержание дисциплины				Форма
N раздела, название раздела	N Tembi	Название темы	Содержание темы	Аудитор- ная нагрузка, отводимая на лекци- онный материал темы, ак.ч.	Названия семинаров по теме. Аудиторная нагрузка, отводимая на каждый семинар темы, ак.ч.	Самостоятельная работа: название темы самостоятельной работы; трудоемкость темы, ак.ч.	текуще- го кон- троля успева- емости
г «приближения сплошной молели.	1	Характеристи- ка курса. Приближе- ние (модель) сплошной среды.	Введение в предмет. Основные разделы курса и взаимосвязь между ними. Соотношение механики (динамики) сплошной среды и акустики. Приближение (модель) сплошной среды, условия введения этого приближения; возможности для полевого описания реальных сред. Начальные сведения о представлении Эйлера и Лагранжа.	2 ак. ч.	Анализ применимости приближения сплошной среды к разномасштабным системам: а) сантиметровый кубик идеального газа, б) билипидная клеточная мембрана, в) спиральная галактика. 2 ак.ч.	Изучение лекционного материала. Получение некоторых численных оценок при применении приближения сплошной среды к рассмотренным системам. 4 ак. ч.	дз, оп
1. Содержание курса; смысл и условия среды»: основные уравнения для этой м	2.	Методы анализа сплошных сред.	Радиофизические методы математического анализа сплошных сред и акустические методы их диагностики.	2 ак. ч.	Рассмотрение примеров и задач на применение радиофизических методов и подходов в МСС. 2 ак.ч.	Проработка лекционного материала. Выполнение домашнего задания по решению задач. 8 ч.	ДЗ, ОП
		Основные уравнения для описания абстрактной модели сплошной среды (без конкретизации на реальные вещественные среды).	Использование фундамен- тальных законов сохранения физики (балансовых соотно- шений) для вывода базовых уравнений обобщенной («аб- страктной») модели сплош- ной среды (СС) в представле- нии Эйлера; объемные и по- верхностные силы; тензор напряжений. Роль определя- ющих уравнений в конкрети- зации базовых уравнений обобщенной модели сплошной среды для реальных сред.	2 ак. ч.	Вывод «рабочих» матема- тических соотношений: а) связь относительного изменения малого элемента жидкого объема с дивер- генцией поля скорости среды, б) формула для подведения полной времен- ной производной под инте- грал по жидкому объему; в) представление для вы- числения оператора полной производной по времени. 2 ак. ч.	Проработка лекционного материала. Вывод полученных в лекциях уравнений через использование не «жидкого» объема, а фиксированного в пространстве. 8 ак. ч.	ДЗ,
2. Модели «классических» сплошных сред	1.	Определяющие соотношения и система уравнений для описания динамики жидкости (идеальной и вязкой).	Вывод определяющих уравнений для жидких текучих сред (идеальных и неидеальных), тензор вязких напряжений; использование полученных соотношений для вывода системы уравнений гидродинамики (уравнение непрерывности, Навье-Стокса, уравнение баланса энергии). Приближение несжимаемой жидкости.	2 ак. ч.	Уравнения гидродинамики в различной форме (в различной ной валичной записи). Решение задач с использованием полученных уравнений.	Проработка лекционного материала. Самостоятельное решение домашних задач с использованием определяющих соотношений и уравнений динамики жидких сред. 8 ак. ч.	ДЗ, ОП,
	2.	Возможные моды неиде- альной среды	Моды безграничной вязкой теплопроводной среды: вихревая, акустическая, энтропийная; взаимодействие мод (в линейном приближении).	2 ак. ч.	Уравнения и соотношения термодинамики в описании жидких сред. 2 ак. ч.	Освоение лекционного материала, самостоятельное решение задач 8 ак. ч.	ДЗ, ОП, КР
	3.	Модель твердой упругой среды; базо- вые соотно- шения и уравнения.	Детализация лагранжева опи- сания сплошных сред. Тензор деформации. Обобщенный закон Гука. Вывод волнового уравнения для линейной теории упругости; два типа волн в твердых упругих средах.	2 ак. ч.	Рассмотрение основных уравнений теории упругости, анализ различных форм записи уравнения Гука и различных параметров упругости; решение волновых задач в теории упругости. 2 ак. ч.	Повторение основ кинетической теории и основных сведений относительно уравнения Больцмана 4 ак. ч.	ДЗ, ОП

	4.	Характерные системы и задачи теории упругости	Элементы теории упругих оболочек. Основы теории трещин, теория разрушения.	2 ак. ч.	Решение задач по теории оболочек и по теории тре- щин. 2 ак. ч.	Освоение лекционного материала. Самостоятельное решение задач домашнего задания. 4 ак. ч.	ДЗ, ОП
со специальными свой- ми	1.	Модели сплошных сред со «спе- циальными» свойствами.	Знакомство со «специальны- ми» типами сред: вязкоупру- гие среды (модели Максвелла и Кельвина - Фойгта), рези- ноподобные среды (эластоме- ры), модели биологических тканей, гранулированные среды и их особые свойства, контактная нелинейность Герца.	2 ак. ч.	Обсуждение характерных свойств сплошных сред со «специальными» свойствами. Решение задач. Демонстрация динамики сыпучей среды при вибровоздействии. 2 ак. ч.	Изучение лекционного материала. Подбор примеров сред с рассмотренными свойствами. Самостоятельное решение задач. 8 ак. ч.	Об, ДЗ
3. Модели сплошных сред ствам	2.	Обзор до- полнитель- ных разделов курса	Расширенные возможности использования модели сплошной среды на примерах: а) динамика многофазных сред, суспензий, б) гидродинамика с учетом сил тяготения (приложение к космологии, к процессам формирования галактик), в) магнитная гидродинамика, г) электродинамика сплошных сред,	2 ак. ч.	Рассмотрение характерных задач по рассмотренным в лекциях направлениям обобщения курса «Динамика сплошных сред» 2 ак. ч.	Повторение материала всего курса. Ликвидация задолженностей по домашним заданиям. 8 ак. ч.	ДЗ, ОП

Предусмотрены следующие формы текущего контроля успеваемости.

- 1. Домашнее задание (ДЗ);
- 2. Контрольная работа (КР);
- 3. Обсуждение (Об).
- 4. Опрос (ОП)

9. Место дисциплины в структуре ООП ВПО

- 1. Обязательная дисциплина.
- 2. Вариативная часть, блок профессиональной подготовки, дисциплина магистерской программы.
- 3. Курс связан с рядом дисциплин, преподаваемых на физическом факультете. К началу изучения курса студент должен владеть знаниями общего курса физики, курса теоретической механики, основами сведениями из курса механики сплошных сред, знать материал курса «методы математической физики»; знания по перечисленным учебным дисциплинам являются основой для изучения данного курса.
 - 3.1. Дисциплины, которые должны быть изучены для начала освоения данной дисциплины: общая физика, математическая физика, бакалаврский курс механики сплошных сред, введение в акустику, теоретические основы акустики.
 - 3.2. Дисциплины, для которых освоение данной дисциплины (модуля) необходимо как предшествующее: «Акусто-гидродинамические явления в сплошных средах» (реально 2-ая часть двухсеместрового учебного комплекса), дисциплины «Материаловедение и методы диагностики», «Физика океана», «Акустика океана», «Физика шумов и вибраций. Акустическая экология», «Акустическая кавитация», научно-исследовательская практика, научно-исследовательская работа, подготовка выпускной квалификационной работы.

10. Образовательные технологии

Отдельные разделы курса имеют иллюстративное сопровождение в виде компьютерных презентаций. Лекции читаются с использованием современного мультимедийного и проекционного оборудования.

11. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Примеры домашних заданий по дисциплине «Динамика сплошных сред»:

- 1. Провести вывод уравнения неразрывности на основе рассмотрения фиксированного контрольного объема сплошной среды (как альтернатива рассмотренному на лекции выводу относительно «жидкого объема»).
- 2. Исходя из выражения для определяющего соотношения (для тензора напряжений) применительно к неидеальной жидкости и используя уравнение движения «абстрактной» сплошной среды, вывести уравнение Навье-Стокса.
- 3. Получить волновые уравнения для вязко-упругой среды (одномерный случай), описываемой моделями Максвелла и Кельвина- Фойгта.

Примеры тем для обсуждений по дисциплине «Механика сплошных сред»:

- 1. Каковы характерные различия и их причины (физические и «отраженные» в математических моделях) для жидких текучих сред и твердых упругих сред.
- 2. Обсуждение линеаризованного и нелинейного вариантов теории упругости и основных уравнений. .
- 3. После проведения контрольных работ обсуждение их итогов с разбором контрольных задач.

Примеры контрольных вопросов и задач для контрольных работ по дисциплине «Динамика сплошных сред»:

- 1. Написать уравнение Навье-Стокса в проекции на ту или иную координатную ось с «раскрытием» всех дифференциальных операторов.
- 2. Получить «классическое» уравнение теплопроводности из «нужного» уравнения системы гидродинамических уравнений.

Опросы студентов по дисциплине «Механика сплошных сред» являются проверкой выполнения домашних заданий (см. раздел «Примеры домашних заданий»).

Вопросы к экзамену по дисциплине «Динамика сплошных сред»

- 1. Краткая характеристика и взаимосвязь (соотношение) учебной дисциплины: «Динамика (механика) сплошных сред» с «Гидродинамикой», «Газодинамикой», «Теорией упругости», «Акустика»
- 2. Приближение (модель) сплошной среды: цели, условия и примеры применимости. Как соотносится общая модель сплошной среды с конкретными моделями сред?
- 3. Общие принципы получения уравнений для общей модели сплошной среды (без конкретизации на реальные среды). Подходы Эйлера и Лагранжа в описании сплошных сред. Субстанциональная производная. Правило дифференцирования интеграла по жидкому объему. Объемные силы и тензор напряжений.
- 4. Вывод уравнений (на основе законов сохранения и балансовых соотношений физики) для общей модели сплошной среды.
- 5. Схема действий для конкретизации уравнений для общей модели сплошной среды применительно к реальным вещественным средам. Понятие об определяющих соотношениях. Определяющие соотношения для жидкостей (в общем случае вязких).
- 6. Вывод на основе полученных определяющих соотношений уравнений гидродинамики. Частные случаи гидродинамических моделей (в том числе, несжимаемая и баротропная жидкость).
- 7. Моды безграничной неидеальной (вязкой и теплопроводной) жидкой среды.

- 8. Тензор деформации, обобщенный закон Гука для твердых упругих сред, его конкретизация для изотропных сред, введение различных характеристик для упругих свойств среды.
- 9. Вывод волнового уравнения в рамках линейной теории упругости. Два типа упругих волн в данных средах.
- 10. Отличительные свойства текучих и твердых упругих сред с точки зрения их физических свойств и математических моделей.
- 11. Элементы теории упругих оболочек, динамические задачи.
- 12. Теория трещин; различные типы разрушений, энергетическое уравнение, критерий Гриффитса, устойчивый и неустойчивый процесс развития трещины.
- 13. Модели и основные соотношения вязкоупругих сред, волновое уравнение (в одномерном случае); его решение.
- 14. Основные подходы к описанию «резиноподобных» сред (эластомеров); модели сплошной среды применительно к сложноструктурным средам (биоткани, геоматериалы).
- 15. Методы описания многофазных сплошных сред (примеры). Элементы и основные уравнения магнитной гидродинамики.

12. Учебно-методическое обеспечение дисциплины

12.1. При изучении курса основное внимание следует уделять физическим механизмам изучаемых явлений, анализу математических моделей, необходимо акцентировать внимание на взаимосвязи материала курса «Динамика сплошных сред» со многими разделами науки (фундаментальной и прикладной), использующими методы и подходы этого курса. Необходимо формировать у учащихся знание (в некоторых случаях - представление) о типичных числовых значениях основных параметров и характеристик, развивать способность к оценке и прогнозу развития данного научного направления.

12.2. Литература

Основная литература:

- 1. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М.: Наука, 1986.
- 2. Ландау Л. Д., Лифшиц Е. М. Теория упругости М.: Наука, 1987.
- 3. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред. М.: Наука.

Дополнительная литература:

- 1. Петкевич В. В. Основы механики сплошных сред. М.:УРСС, 2001
- 2. Гольдштейн Р. В., Городцов В. А. Механика сплошных сред ч. 1 М.: Наука, 2000.
- 3. Гамалий Е. Г., Маков Ю.Н. Критерии и оценки инкрементов неустойчивости одномерного адиабатического течения. Препринт № 175 ФИАН М.,1986.

Периодическая литература:

- 1. Броман Г.И., Руденко О.В. Затопленная струя Ландау: точные решения, их смысл и приложения// УФН, 2010, Т. 180, №1, С. 97 104.
- 2. Маков Ю.Н. Аналогия эффектов стратификации и сжимаемости сдвиговых течений в теории гидродинамической устойчивости // Изв. АН СССР «Механика жидкости и газа», 1990, № 2, С. 176 178.
- 3. Маков Ю.Н., Руденко О.В., Нелинейная эволюция квазикруговых течений // Изв. АН СССР «Механика жидкости и газа», 1990, № 6, С. 167 169.

Интернет-ресурсы:

13. Материально-техническое обеспечение

- 13.1. Помещения учебная аудитория. Лекционные и семинарские занятия по дисциплине проводятся в соответствии с требованиями к материально-техническим условиям реализации ООП (п.5.3. образовательного стандарта МГУ по направлению подготовки «Физика»). Аудиторный фонд для проведения учебных занятий включает достаточное количество аудиторий для проведения лекций и семинарских занятий с количеством посадочных мест не менее 15 в каждой аудитории.
- 13.2. Оборудование доска, фломастеры или мел; некоторые лекции сопровождаются иллюстративным материалом (либо фотоматериалы, либо демонстрация слайдов компьютерных презентаций).

Специализированные компетенции профильной направленности обучения (специализированные компетенции магистерской программы)					
М-СПК-10	Способность владеть теоретическими знаниями и практическими навыками их применения для построения моделей новых по структуре сред (например, тех или иных наносред, наноструктур и т.п.), для анализа динамики и синтезирования сред (систем) с требуемым динамическим поведением, в т.ч. применительно к задачам физической и прикладной акустики. Знание физических свойств сред и материалов со специальными свойствами, в том числе используемыми в современных акустических технологиях. Умение ставить и решать задачи современной динамики сплошных сред, планировать исследования в этой области с акцентом на задачи физической и прикладной акустики.				