Рабочая программа дисциплины

1. Название дисциплины Медицинские ультразвуковые технологии

2. Лекторы

- **2.1.** Д.ф.-м.н., доцент Хохлова Вера Александровна, кафедра акустики, vera@acs366.phys.msu.ru, тел. +7-495-939- 29-52.
- **2.2.** К.ф.-м.н., научн. сотр. Крит Тимофей Борисович, кафедра акустики, timofey@acs366.phys.msu.ru, тел. +7-495-939- 29-52.

3. Аннотация дисциплины

Курс направлен на систематическое изложение физических основ применения ультразвука в современных медицинских приложениях, принципов работы разрабатываемых медицинских устройств и основных направлений развития диагностической и терапевтической медицинской техники. Актуальность такого курса обусловлена быстрым развитием новых подходов к использованию акустических методов в медицине и их широким внедрением в современную медицинскую практику. В курсе рассматриваются основные акустические свойства биологической ткани, волновые эффекты распространения ультразвука в биологической ткани, а также конкретные новые приложения ультразвуковых методов в медицинской диагностике и терапии.

4. Цели освоения дисциплины

Основной целью данного курса является ознакомление слушателей с ультразвуковыми технологиями, как уже используемыми в клинической практике, так и находящимися в стадии разработки. Прослушав курс, студенты узнают об основных акустических свойствах биологических тканей и волновых эффектах, использующихся в современной медицине для диагностики и терапии. Кроме того, слушатели познакомятся с новыми разработками в области современных диагностических и терапевтических устройств и принципами их работы.

5. Задачи дисциплины

Задачами курса являются: (1) систематическое изложение основных явлений, сопровождающих распространение ультразвука в биологических тканей, использующихся для диагностики и терапии; (2) изложение современного состояния научных исследований и новых направлений в этой области; (3) знакомство с принципами работы конкретных современных устройств, использующихся в исследовательских работах и медицинской практике.

6. Компетенции

6.1. Компетенции, необходимые для освоения дисциплины

М-ОНК-2; М-ИК-2; М-ПК-8;

Предполагается, что слушатели владеют базовыми методами математической физики, знают основы гидродинамики и акустики.

6.2. Компетенции, формируемые в результате освоения дисциплины

М-ИК-3; М-ПК-1; М-ПК-2; М-ПК-3; М-ПК-5; М-ПК-6; М-СПК-19

Прослушавшие курс будут понимать закономерности распространения ультразвука в теле человека, знать особенности акустических свойств биологических тканей, физические принципы работы современных устройств медицинского ультразвука, основные направления развития ультразвуковой медицинской техники, что необходимо для решения научно-исследовательских и научно-инновационных задач развития ультразвуковых технологий в медицине; для постановки конкретных задач научных исследований в данной области, решать их с помощью современных математических методов, аппаратуры, оборудования и информационных технологий и оформлять их результаты в виде научных отчётов, статей и докладов.

7. Требования к результатам освоения содержания дисциплины

В результате освоения дисциплины студент должен знать о величинах основных параметров различных биологических тканей, типах волн, распространяющихся в теле человека и волновых эффектов, таких, как фокусировка, дифракция, поглощение, рассеяние, акустическая нелинейность, использующихся в диагностике и терапии, знать основные типы современных

устройств ультразвуковой диагностики и терапии, уметь рассчитывать основные характеристики создаваемых ими акустических полей.

8. Содержание и структура дисциплины

Вид работы		Семестр			
		2	3	4	Всего
Общая трудоёмкость, акад. часов			72		72
Аудиторная работа:			34		34
Лекции, акад. часов			17		17
Семинары, акад. часов			17		17
Лабораторные работы, акад. часов					
Самостоятельная работа, акад. часов			38		38
Вид итогового контроля (зачёт, зачёт с оценкой, эк-			зачет		
замен)					

- e	N темы	Название темы	Структура и содержание дисциплины				
N раздела, название азде			Содержание темы	Ауд. лекц. нагр., ак.ч.	Названия семинаров по теме. Аудиторная нагрузка, отводи- мая на каждый семинар темы, ак.ч.	Самостоятельная работа: название темы работы; трудоемкость темы, ак.ч.	Форма текущего контроля успевае-мости
1. Распространение ультразвука в биологических тканях и его воздей- ствие на ткани	1	Акустические свойства биоло- гических тка- ней, методы их измерений и	Типы волн, распространяющихся в биологических тканях. Основные акустические параметры тканей: плотность, скорость, коэффициент поглощения, коэффициент нелинейности, сдвиговый модуль. Методы их измерений. Характерные значения.	2 ак.ч.	1. Методы измерений акустических свойств биологических тканей. Распространение различных типов волн в биологическихтканях. 1 ак.ч.	Акустические свойства биологических тканей и методы их измерений. 3 ак. ч.	<i>О</i> б ДЗ
		волновые эф- фекты распро- странения уль- тразвука в био- тканях	Дифракция, поглощение, рассеяние, нелинейное распространение, нелинейное рассеяние, генерация сдвиговых волн. Основные модельные уравнения. Физические принципы современных методов диагностики и терапии.		2. Основные уравненения и эффекты расространения продольных и сдвиговых волн в тканях 1 ак. ч.	Волновые эффекты распространения ультразвука в биотканях 3 ак. ч.	<i>Об</i> Д3
	2	Различные типы воздействия на ткани, методы анализа вызыва-	Механизмы гибели клеток. Тепловые, механические разрушения. Тепловая доза. Тепловой и механический индексы. Некроз и апоптоз. Вопросы безопасности и эффективности воздействия. Гистологиче-	2 ак.ч.	1. Тепловое и механическое воздействие ультразвука на ткани. Количественные критерии воздействия. 1 ак. ч.	Различные типы воздействия на ткани 2 ак. ч.	<i>Об</i> Д3
		емых разрушений механических и тепловых повреждений.		2. Анализ повреждений, вызываемых ультразвуком в тканях. 1 ак. ч.	Разрушения тканей, вызываемые ультра- звуком, 3 ак. ч.	Об ДЗ, КР	
2. Источники медицинского ультразву- ка и методы измерения генерируемых ими полей	1.	Современные источники УЗ медицинских инструментов, их характеристики.	Пьезокерамические элементы, пьезокомпозитные, электроразрядные, электромагнитные, оптоакустические, CMUTs, линейные и двумерные решетки для диагностики и терапии, требования к ним. Характерные размеры, частоты и создаваемые давления. Примеры.	1 ак. ч.	1. Источники ультразвуковых волн медицинских инструментов, характерные параметры и величины создаваемых ими полей. 1 ак. ч.	Характеристики источников УЗ медицинских инструментов, 2 ак. ч.	Об, Д3, К
	2.	Измерение УЗ полей медицин- ских излучателей	Метрология и дозиметрия в медицинском ультразвуке. Методы акустического взвешивания для измерения полной мощности источника. Измерение давления, основные типы гидрофонов – пьезокерамические, ПВДФ, оптоволоконные гидрофоны, их характеристики. Акустическая голография для характеризации работы излучателей и создаваемых ими полей. ИК-методы, оптические методы для быстрой визуализации структуры поля. Измерение температуры и кавитации в ткани.	2 ак. ч.	1. Метрология и дозиметрия в медицинском ультразвуке. Методы акустического взвешивания для измерения полной мощности источника. Измерение давления. 1 ак. ч. 2. Акустическая голография для характеризации работы излучателей и создаваемых ими полей. ИКметоды, оптические методы для быстрой визуализации структуры поля. 1 ак. ч.	Параметры УЗ поля, используемые в метрологии. Понятие дозы. Измерение полной мощности. З ак. ч. Методы измерение структуры ультразвукового поля давления и интенсивности. З ак. ч.	<i>Об,</i> ДЗ

развитии и хирургии	1	Развитие мето- дов ультразву- ковой визуали- зации	Визуализация с использованием высших гармоник, нелинейного отклика контрастных агентов, детекторы кавитации. Эластография. Визуализация сдвигового модуля мягких тканей для обнаружения опухолей. Сдвиговые волны для диагностики костей, обнаружения тромбов и внутренних кровотечений. Тенденции в развитии УЗ медицинской аппаратуры.	3 ак.ч.	1. Визуализация с использованием высших гармоник, V3 контрастных агентов, детекторы кавитации. 1 ак.ч. 2. Эластография мягких тканей. Диагностика костей, обнаружение тромбов и внутренних кровотечений 1 ак. ч.	Нелинейные методы УЗ диагностики З ак. ч. Эластография в приборах УЗИ З ак. ч.	Об ДЗ Об ДЗ
3. Основные направления в развитии ультразвуковой интросткопии и хирург			УЗ диагностические машины с открытой архитектурой. Портативные диагностические устройства. Датчики для внутрисосудистой диагностики. Комбинация диагностического УЗ с другими методами, МРТ, КТ, оптика в диагностике и неинвазивной хирургии.		3. Сканеры с открытой архитектурой. Портативные диагностические устройства. Датчики для внутрисосудистой диагностики. 1 ак. ч.	Эластография в приборах УЗИ 3 ак. ч.	Об ДЗ КР
	2	Развитие мето- дов ультразву- ковой терапии и хирургии	Ультразвуковая хирургия с помощью мощного фокусированного ультразвука. Излучатели, решетки, основные успехи в лечении доброкачественных и злокачественных опухолей.	3 ак.ч.	1. Неинвазивная УЗ хирургия. 1 ак. ч.	Примеры устройств для теплового и механического воздействия 4 ак. ч.	<i>Об</i> Д3
			Литотрипсия, ударно-волновая терапия и инструментальная ультразвуковая хирургия. Примеры используемых источников, режимы и механизмы воздействия, характерные параметры полей, существующие проблемы и побочные эффекты. Механизмы воздействия на ткани. Использование при полостных операциях. Применение в офтальмологии.		2. Литотрипсия, ударно-волновая терапия. 1 ак. ч. 3. Инструментальная ультразвуковая хирургия. 1 ак. ч.	Режимы воздействия, параметры полей и побочные эффекты, 3 ак. ч. Разрушения тканей, вызываемые ультразвуком, 2 ак. ч.	Об Д3, КР
4. Новейшие технологии медицинского ультра- звука	1.	Ультразвуковые контрастные агенты, наночастицы, нанокапли и эмульсии.	Применение в диагностике для визуализации кровеносных сосудов, работы сердца, очагов заболевания и адресной доставки лекарств, повышения эффективности теплового и механического воздействия на ткани.	1. ак. ч.	1. Ультразвуковые контрастные агенты. 1 ак. ч.	Клиническое использование контрастных агентов, 3 ак. ч.	Об, Д3, К
	2.	Обзор приложений в медицинском ультразвуке на стадии разработки	Примеры приложений и клинических испытаний. Ускорение растворения тромбов при инсульте. Безоперационное разрушение участка мозга для лечения тремора. Разрушение опухолей мозга.	1 ак. ч.	1. Применение ультразвука в оф- тальмологии. 1 ак. ч.	Воздействие на мозг через кости черепа. 2 ак. ч.	Об, ДЗ

Предусмотрены следующие формы текущего контроля успеваемости:

1. Расчетно-графическое задание (РГЗ); 2. Домашнее задание (ДЗ); 3. Коллоквиум (К); 4. Контрольная работа (КР); 5. Опрос (Оп); 6. Обсуждение (Об).

9. Место дисциплины в структуре ООП ВПО

- 1. Дисциплина по выбору.
- 2. Вариативная часть, профессиональный блок, дисциплина магистерской программы.
- 3. Изложение опирается на знания, полученные студенами ранее в общефакультетских курсах по математической физике и курсах программы бакалавриата кафедры акустики, в частности «Механика сплошных сред», «Введение в акустику», «Теория волн» и «Теоретические основы акустики», «Численные методы», «Ультразвук в медицине».
 - 3.1. Дисциплины, которые должны быть освоены для начала освоения данной дисциплины:

Математический анализ, общие курсы физики, Введение в акустику, Теория волн, Теоретические основы акустики (оба раздела курса), Численные методы, Ультразвук в мелицине.

3.2. Дисциплины, для которых освоение данной дисциплины необходимо как предшествующее:

Научно-исследовательская практика, научно-исследовательская работа.

10. Образовательные технологии

Изложение в основном ведётся как традиционным способом (с использованием мела и доски), так и с использованием компьютерного проектора. Кроме того, проводится экспериментальная демонстрация работы излучателей, типичных для диагностических и терапевтических ультразвуковых устройств, методов измерений полей мощных ультразвуковых источников. Во время проведения коллоквиума проводится общая дискуссия по теме курса.

11. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Вопросы к зачету по спецкурсу «Современные медицинские ультразвуковые технологии»

- 1. Какие основные акустические параметры ткани используются в ультразвуковой диагностике?
- 2. Каков характерный пространственный масштаб механизм и частотный закон поглощения ультразвука в ткани?
- 3. Какие известны механизмы, вызывающие гибель клеток при воздействии ультразвуком?
- 4. Как можно проанализировать тепловое либо механическое повреждение клеток ткани?
- 5. В чем отличие в составе и свойствах пьезокерамических и пьезокомпозитных преобразователей?
- 6. На чем основан метод акустического взвешивания? Для чего он используется?
- 7. В чем состоит метод акустической голографии?
- 8. Что такое эластография?
- 9. Принцип построения изображений в режиме тканевых гармоник и его преимущества.
- 10. Что такое ультразвуковая система с открытой архитектурой, ее отличие от обычных систем УЗИ.
- 11. Какие физические механизмы используются для разрушения биологической ткани в ультразвуковой хирургии с помощью фокусированного ультразвука?
- 12. В чем отличие ультразвуковых решеток, применяющихся в диагностике и неинвазивной хирургии?
- 13. Принцип работы литотриптеров. Основные параметры облучения.
- 14. Привести примеры контрастных ультразвуковых агентов и их использования.
- 15. Как может использоваться ультразвук для лечения катаракты и глаукомы?

16. В чем трудность использования ультразвука для визуализации и воздействия на ткани мозга?

Образцы задач для самостоятельного решения

<u>Задача 1</u>. Рассчитать длину поглощения ультразвука с частотой 2 МГц в биологической ткани с коэффициентом поглощения 0.5 дБ/см/МГц. Представить решение в масштабах длины волны. Скорость звука в ткани считать равной 1550 м/с.

Задача 2. Оценить интенсивность в фокусе ультразвукового пучка с частотой 1 МГц при фокусировке в биологической ткани, чтобы начальная скорость увеличения температуры ткани в фокусе составляла 20°С/с. Коэффициент поглощения звука считать равным 0.5 дБ/см/МГц, теплоемкость единицы объема ткани $c_v = 3.8 \cdot 10^6 \, \text{Дж·м}^{-3} \cdot ^{\circ}\text{C}^{-1}$.

<u>Задача 3</u>. Характерная длина фокального дифракционного максимума области вдоль оси пучка, геренорируемого устройствами ультразвуковой хирургии составляет около 1 см. Оцените величину интенсивности ультразвуковой волны с частотой 1.5 МГц, чтобы на таком расстоянии в волне образовался ударный фронт. Коэффициент нелинейности В/А в ткани считать равным 9, скорость звука - 1550 м/с, плотность – 1200 кг/см³.

<u>Задача 4</u>. Рассчитать резонансный размер воздушного пузырька для ультразвуковой волны с частотой 1 МГц в воде. Отношение удельных теплоемкостей воздуха считать равным γ =1.4.

<u>Задача 5</u>. Рассчитать характерные продольный и поперечный размеры фокальной области фокусированного ультразвукового пучка с частотой 2 МГц, фокусным расстоянием 5 см и диаметром излучающего элемента в виде сферической чашки 5 см. Скорость звука в ткани считать равной 1550 м/с.

12. Учебно-методическое обеспечение дисциплины

Основная литература:

- 1. Хилл К., Бэмбер Дж., тер Хаар Г. Ультразвук в медицине. Физические основы и применения. М.: Физматлит, 2008. Перевод с английского под ред. Л.Р. Гаврилова, В.А. Хохловой, О.А. Сапожникова, 539 с.
- 2. Гаврилов Л.Р. Фокусированный ультразвук высокой интенсивности в медицине. М.: ФАЗИС, 2013, 656 стр.
- 3. Акопян Б.В., Ершов Ю.А. Основы взаимодействия ультразвука с биологическими объектами, МГТУ им. Баумана, 2005, 224 стр.
- Грегуш П., Звуковидение. М.: Мир. 1982.
- 5. Осипов Л.В. Ультразвуковые диагностические приборы. М.: Видар, 1999.

Дополнительная литература:

- 1. Бергман Л. Ультразвук и его применение в науке и технике. М.: Иностр. лит., 1957. 726 с.
- 2. P. Wells. Biomedical ultrasonics. Academic Press, 1977.
- 3. Kremkau F.W. Diagnostic Ultrasound. 6th ed. Elsevier Science, 2002.

Периодическая литература:

- 1. Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань (обзор). Акуст.ж., 2003, т.49, №4, с.437-464.
- 2. Руденко О В "Нелинейные волны: некоторые биомедицинские приложения", Успехи Физических Наук, 2007, т. 177, с.374–383.

3. Acoustics Today. A publication of the Acoustical Society of America, V.8, ISSUE 4. OCTOBER 2012. Ultrasound Promises Revolutionary Advances in Medicine.

Интернет-ресурсы: http://acoustics.phys.msu.ru

13. Материально-техническое обеспечение

В соответствии с требованиями п.5.3. образовательного стандарта МГУ по направлению подготовки «Физика».

Учебная аудитория физического факультета МГУ

Лаборатория нелинейной и медицинской акустики кафедры акустики