Рабочая программа дисциплины

- 1. Название дисциплины: Физическая акустика твердого тела
- 2. Уровень высшего образования -магистратура
- 3. Направление подготовки: 03.04.02 Физика (магистратура)
- 4. Аннотация: Целью спецкурса является изучение студентами основных линейных и нелинейных явлений, сопровождающих распространение акустических волн в кристаллах. Подробно изучаются вопросы нелинейной акустики твердого тела, акустоэлектроники, акустооптического и магнитоакустического взаимодействий.
- 4. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся (указывается согласно рабочему плану):

Объем дисциплины составляет \underline{2} зачетные единице, всего \underline{72} часа, из которых \underline{36} часов составляет контактная работа обучающегося с преподавателем (\underline{33} часа занятий семинарского типа, \underline{0} часов групповых консультаций, \underline{0} часов индивидуальных консультаций, \underline{2} часа мероприятия текущего контроля успеваемости, \underline{1} час мероприятия промежуточной аттестации), \underline{36} часов составляет самостоятельная работа обучающегося.

5. Входные требования для освоения дисциплины, предварительные условия: Для освоения дисциплины необходимы знания и умения, приобретаемые в рамках дисциплин «Механика», «Методы математической

физики», «Электродинамика», «Квантовая механика», «Теория волн», «Теоретические основы акустики».

6. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества **академических** часов и виды учебных занятий

Наименование и краткое содержание разделов и тем дисциплины, форма промежуточной аттестации по дисциплине	Всего, часы	В том числе								
		Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная рабо обучающегося, часы из них		работа
		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости коллоквиумы, практические контрольные занятия и др.*	Всего	Выполнени е домашних заданий	Подгот овка рефера тов и т.п.	Всего
АКУСТИЧЕСКИЕ ВОЛНЫ В КРИСТАЛЛАХ. Тензорное описание упругих свойств кристаллов. Уравнения, описывающие распространение акустических волн в анизотропных средах. Фазовая скорость и поляризация объемных волн. Групповая скорость и скорость переноса энергии волн в кристаллах. Коническая рефракция. Пьезоэлектрический эффект. Уравнения состояния пьезоэлектрических кристаллов. Связанные	18.5	4	4			0.5	8.5	6	4	10

акустоэлектромагнитные волны. Квазистатическое приближение. Объемные акустические волны в пьезокристаллах. Поверхностные акустические волны (ПАВ) в анизотропных средах. Алгоритм нахождения фазовой скорости. "Запрещенные" направления для ПАВ в кристаллах. ПАВ в пьезокристаллах. Структура волны электрического поля вне кристалла.									
НЕЛИНЕЙНАЯ АКУСТИКА ТВЕРДОГО ТЕЛА. Основы нелинейной теории упругости. Тензор Пиолы-Кирхгофа. Физическая и геометрическая нелинейности. Генерация гармоник и нелинейные взаимодействия продольных и поперечных акустических волн в изотропных телах. Нелинейные параметры твердых тел. Нелинейные акустические эффекты в кристаллах. Уравнение Грина-Кристоффеля для генерации второй гармоники в кристаллах. Нелинейные поляризационные эффекты при генерации второй гармоники сдвиговой волны. Трехволновые взаимодействия акустических волн в кристаллах. Нелинейные процессы на границах раздела твердых тел. Свойства граничной акустической нелинейности. Генерация гармоник и искажение формы нелинейных поверхностных и граничных акустических волн.	18.5	4	4		0.5	8.5	6	4	10
ПОГЛОЩЕНИЕ ЗВУКА В ИЗОТРОПНЫХ ДИЭЛЕКТРИКАХ. Поглощение звука в твердых телах вследствие вязкости и теплопроводности.	10.3	3	2		0.3	5.3	5		5

Феноменологическая теория поглощения продольных, поперечных и поверхностных волн в изотропных телах. Фононный спектр тепловых колебаний решетки. Фонон-фононные взаимодействия. Взаимодействие акустических волн с тепловыми фононами. Фонон-фононное поглощение: теории Ландау-Румера и Ахиезера.								
ОСНОВЫ АКУСТОЭЛЕКТРОНИКИ. Механизмы акустоэлектронного взаимодействия в кристаллах. Акустические волны в пьезополупроводниках. Акустоэлектронное поглощение и дисперсия акустических волн. Усиление звука дрейфом носителей заряда. Нелинейные акустоэлектронные явления. Концентрационная нелинейность. Акустоэлектрический эффект. Генерация второй акустической гармоники в пьезополупроводниках. Пространственные характеристики и зависимости от проводимости полупроводника.	11.3	3	3		0.3	6.3	5	5
АКУСТООПТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ. Фотоупругий механизм взаимодействия электромагнитных и акустических волн. Дифракция света на звуке. Режимы Рамана-Ната и Брэгга. Пространственные характеристики взаимодействия и эффективность дифракции. Рассеяние Мандельштама-Бриллюэна на тепловых колебаниях решетки. Определение анизотропии скорости звука. Параметрическое взаимодействие света и звука при вынужденном рассеянии Мандельштама-Бриллюэна.	6.2	2	1		0.2	3.2	3	3

ОСНОВЫ МАГНИТОАКУСТИКИ И КВАНТОВОЙ АКУСТИКИ. Основное уравнение магнитной динамики. Внутренняя энергия магнитных кристаллов. Электромагнитные, магнитостатические и спиновые волны в магнетиках. Магнитоупругое взаимодействие. Магнитоакустический резонанс. Квантовые эффекты в физической акустике. Акустический парамагнитный и ядерный магнитный резонансы.		2	1		0.2	3.2	3		3
Промежуточная аттестация					1	1			
Итого		18	15		3	36	28	8	36

^{*} Текущий контроль успеваемости может быть реализован в рамках занятий семинарского типа, групповых или индивидуальных консультаций

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Примерный список вопросов для проведения промежуточной аттестации и написания рефератов:

Групповая скорость и скорость переноса энергии волн в кристаллах. Основы нелинейной теории упругости. Феноменологическая теория поглощения продольных, поперечных и поверхностных акустических волн в изотропных телах. Акустические волны в пьезополупроводниках. Акустоэлектронное поглощение и дисперсия акустических волн. Усиление звука дрейфом носителей заряда. Фотоупругий механизм взаимодействия электромагнитных и акустических волн. Дифракция света на звуке. Магнитоакустический резонанс.

(приводятся типовые вопросы, тесты, темы рефератов и пр., а также таблица оценивания учебных достижений)

Планируемые	Критерии оценивания результатов обучения
-------------	--

^{7.} Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине Имеются конспекты по отдельным лекциям спецкурса.

результаты обучения* (показатели достижения заданного уровня освоения компетенций)	1	2	3	4	5
Знать методы	Отсутствие	Фрагментарные	Знание, в целом	Знание, в целом	Знание, дающее
критического	знаний	знания методов	дающее	дающее	полное
анализа и оценки		•	представление о	представление о	представление о
современных		достижений,	методах оценки	методах оценки	методах оценки
научных			•	научных	научных
достижений, а также		1 1 5 1	достижений,	достижений,	достижений,
методы		новых идей при	методах	методах	методах
генерирования		решении	формулирования	формулирования	формулирования
новых идей при		исследовательских и	новых идей при	новых идей при	новых идей при
решении		практических задач	решении	решении	решении
исследовательских и		физической	исследовательских и	исследовательских и	исследовательских и
практических задач,		акустики твердого	практических задач	практических задач	практических задач
в том числе в		тела, в т.ч. в	физической	физической	физической
междисциплинарных		междисциплинарных	акустики твердого	акустики твердого	акустики твердого
областях		областях	тела, в т.ч. в	тела, в т.ч. в	тела, в т.ч. в
			междисциплинарных	междисциплинарных	междисциплинарных
			областях, но не	областях, но	областях
			содержащее	содержит небольшие	
			исчерпывающие	пробелы	
			данные о явлениях и		

			процессах		
Уметь при решении	Отсутствие	Фрагментарные	Навыки	Навыки	Разносторонние
исследовательских и	=			генерировать новые	-
практических задач		новые идеи, ставить	идеи, ставить и	идеи, ставить и	генерировать новые
генерировать новые		и решать	решать	решать	идеи, ставить и
идеи, ставить и		соответствующие	соответствующие	соответствующие	решать
решать		задачи физической	задачи физической	задачи физической	соответствующие
соответствующие		акустики твердого	акустики твердого	акустики твердого	задачи физической
задачи физической		тела	тела, позволяющие	тела, но с пробелами	акустики твердого
акустики твердого			решить некоторые	в их практическом	тела
тела			из этих задач	использовании	
Владеть	Отсутствие	Фрагментарное	В целом успешное,	В целом успешное,	Успешное и
методологией	навыков	владение	но не	но содержащее	систематическое
постановки и		методологией	систематическое	отдельные пробелы	владение
решения задач		постановки и	владение	владение	методологией
физической		решения задач и	методологией	методологией	постановки и
акустики твердого		технологиями	постановки и	постановки и	решения задач и
тела, навыками		оценки достижений	решения задач и	решения задач и	технологиями
критического		в физической	технологиями	технологиями	оценки достижений
анализа и оценки		акустике твердого	оценки достижений	оценки достижений	в физической
современных		тела	в физической	в физической	акустике твердого
научных			акустике твердого	акустике твердого	тела
достижений и			тела	тела	

практической			
деятельности в			
физической акустике			
твердого тела, а			
также в смежных			
областях			

9. Перечень основной и дополнительной учебной литературы

Основная литература

- 1. Руайе Д., Дьелесан Э. Упругие волны в кристаллах. М.: Наука, 1982.
- 2. Auld B.A. Acoustic Fields and Waves in Solids, N.Y.: Wiley & Sons, v. 2, 1974.
- 3. Зарембо Л.К., Красильников В.А. Введение в нелинейную акустику. М.: Наука, 1965.
- 4. Лямов В.Е. Поляризационные эффекты и анизотропия взаимодействия акустических волн в кристаллах. М.: Изд-во Моск. ун-та, 1983.
- 5. Красильников В.А., Крылов В.В. Введение в физическую акустику. М.: Наука, 1984.
- 6. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965.

Дополнительная литература

- 1. Акустоэлектроника. В кн. Практикум по твердотельной электронике. Ред. Петров В.И., Спивак Г.В. М.: Изд-во Моск. ун-та, 1984.
- 2. Такер Дж., Рэмптон В. Гиперзвук в физике твердого тела. М.: Мир, 1975.
- 3. Бархатов А.Н., Горская Н.В., Горюнов А.А., Гурбатов С.Н., Можаев В.Г., Руденко О.В., Акустика в задачах, 2-е изд. М.: Физматлит, 2009.
- 4. Ультразвук. Маленькая энциклопедия. Под ред. И.П. Голяминой. М.: Советская Энциклопедия, 1979.
- 10. Перечень ресурсов Интернет необходимых для освоения дисциплины:
 - http://www.rfbr.ru/rffi/ru/books/o_1782364#1.

- 11. Методические указания для обучающихся по освоению дисциплины
- Лекторы данного спецкурса стремятся в максимальной форме использовать диалоговую форму усвоения студентами учебного материала. Для повышения эффективности этого подхода и бо'льшей заинтересованности студентов в активном участии в научных дискуссиях им рекомендуется предварительно знакомиться по учебным пособиям с материалами, относящимися к теме следующей лекции.
- 12.Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 13. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине Аудитория с доской, фломастеры или мел, иллюстративный материал.

Авторы к.ф.-м.н., доцент **Коршак** Борис Алексеевич, кафедра акустики физического факультета МГУ к.ф.-м.н., снс **Можаев** Владимир Геннадиевич, кафедра акустики физического факультета МГУ