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Diffraction series on a sphere and conical asymptotics
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The problem of finding field components for a con-
ical diffraction problem is studied. All components
except the spherical wave diffracted by cone tip are
under consideration. As a starting point, the in-
tegral formula (7) derived by Babich et.al. is used.
A geometrical optics approximation of the spheri-
cal Green’s function is constructed in the form of
diffraction series. There is a finite set of terms of
the diffraction series on sphere, to each of which the
conical field components correspond. Formula (7) is
simplified, giving a convenient field representation
(26). In many cases further simplification can be
performed, giving formula (30) directly converting
the terms of the diffraction series on sphere into the
field component in the 3D space.

1 Introduction

The problem of scattering of a plane harmonic wave
by a conical obstacle with ideal boundary condi-
tions (Dirichlet or Neumann) is studied. As an ex-
ample of such a cone here we take a flat cone with
the angle Φ at the vertex. However, most of the
consideration performed here can be easily applied
to any cone of polygonal cross-section. Some ideas
can also be useful for the cones of arbitrary cross-
sections.

Usually, the main subject of investigation for the
conical obstacles is the diffraction coefficient, which
is the amplitude of scattering into the spherical
wave. The diffraction coefficient depends on two
directions: the direction of incidence and the direc-
tion of scattering. Both directions can be treated
as points on a unit sphere. The problem of com-
puting the diffraction coefficient has been studied
by Smyshlyaev and co-authors [4]. The result is
the so-called Smyshlyaev’s formula expressing the
diffraction coefficient as a contour integral of the
Green’s function on a sphere with scatterers.

The spherical wave is a very interesting part
of the diffracted wave, but there are many other
types of waves emerging as as a result of diffrac-
tion of a plane wave by a conical obstacle. Namely,
if a polygonal cone is considered, one can men-
tion the geometrically reflected plane waves, cylin-
drical waves scattered by the edges and multiply
diffracted waves (i.e. the waves scattered by one
edge and then re-scattered by another edge). Each

of these components can be computed by the ray
technique, however there is a lot of penumbral zones
corresponding to the geometrical boundaries of vis-
ibility of each wave component, and finding of the
asymptotics in the penumbral zones is a sophisti-
cated problem. Here we are interested in all wave
components except the spherical wave.

The case studied in details in the literature is
the “conical” penumbral zone where the wave front
of the cylindrical scattered wave touches the wave
reflected from the surface of a smooth cone. This
field is known to have structure described by the
function of parabolic cylinder or generalized fresnel
integral [1, 2, 3].

Our aim here is to find a convenient formula
to describe the wave asymptotics in the numerous
penumbral zones. For this we follow Smyshlyaev’s
approach, and express the field in terms of the
Green’s function on the sphere. For the spherical
problem we construct an asymptotics in the form
of diffraction series, i.e. we consider the sequence
of successive diffractions acts, and each diffraction
term on the sphere corresponds to some wave con-
tribution for the initial conical problem. For each
term we restrict the consideration to only the lead-
ing asymptotics.

2 Problem formulation and representa-
tion of the field

The problem is formulated as follows. Let the
Helmholtz equation

∆u + k2u = 0 (1)

be valid in the 3D space (x, y, z), from which a coni-
cal obstacle Ω is removed. The tip of the cone coin-
cides with the origin of the coordinate system The
time dependence of all values has form e−2πft, and
it is omitted henceforth. The direction of incidence
(the direction to the source) is denoted by ω0, the
direction of scattering is denoted by ω. Both ω and
ω0 can be treated as points on a unit sphere. The
incident wave has form

uin = exp{−ikr cos(θ(ω, ω0))}, (2)
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where θ(ω, ω0) is the angular distance between the
points ω and ω0. Here r =

√
x2 + y2 + z2 is the ra-

dial variable. The total field is a sum of the incident
field and the scattered field:

u = uin + usc. (3)

The total field obeys Dirichlet or Neumann
boundary conditions on the boundary ∂Ω. Also,
the field obeys vertex conditions

u = o(r−3/2). (4)

Also the scattered field should obey the radiation
condition, and the total field should obey edge con-
ditions on the edges of the cone Ω. In our simplest
case Ω is the flat cone (see Fig. 1).

Ω = {(x, y, z) | z = 0, x > 0, 0 < y < x tanΦ}.
(5)

We assume here that Φ < π/2. Φ is the “opening
angle” of the flat cone. This cone has two edges,
for which the edge condition has form

u = O(ρ1/2), (6)

where ρ is the distance between the observation
point and the edge.
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Figure 1: Diffraction by a flat cone

The total field obeying the conditions of the prob-
lem can be found by using the formula taken from
[4]:

u(r, ω; ω0) = 2e3πi/4

√
2π

kr
×

∫

γ

Jν(kr)e−iπν/2g(ω, ω0, ν)νdν (7)

The observation point is described by the coordi-
nates (r, ω), Jν is the Bessel’s function. Contour
γ is shown in Fig. 2. Function g(ω, ω0, ν) is the

Green’s function on the sphere for the Laplace–
Beltrami equation

(
∆̃ + ν2 − 1

4

)
g = δ(ω − ω0). (8)

where ∆̃ is the Laplace–Beltrami differential op-
erator on sphere acting on variable ω. Function
g obeys Dirichlet or Neumann boundary condition
(depending on the initial problem) on the contour
∂Ω̃, which is the boundary of the cross-section of
the conical body Ω by the unit sphere. Equation
(8) is valid outside the cross-section Ω̃.
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Figure 2: Contour of integration in (7)

Formula (7) can be understood as the result of
variables separation. Contour γ encircles the singu-
larities of g on the positive half-axis corresponding
to the spectrum of the operator ∆̃−1/4 in the com-
plement of Ω̃ with corresponding boundary condi-
tions.

3 Ray asymptotics of the spherical
Green’s function

To simplify formula (7) we should make some state-
ments related to the asymptotics of the Green’s
function g as a function of ν. For this, consider
the process, developing in time, i.e. study the wave
equation on the sphere

(
∆̃− ∂2

∂t2

)
w = 0. (9)

Let the field be generated by a delta pulse emit-
ted by a point source located at the point ω0. It is
quite clear that the pulse travels with a unit veloc-
ity along the sphere. The pulse first travels from
the source directly, then it hits the scatterer (the
contour δΩ̃) and is scattered for the first time. As
a result, the reflected wave and the edge wave scat-
tered by one of the edges is produced. Then this
wave hits another edge producing the secondary
diffracted wave etc. Let the whole signal w(t) be
“recorded” at the spherical observation point ω.
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The function g(ω, ω0, ν) is the Fourier transform
of w(t) taken at the point

√
ν2 − 1/4.

According to this concept, the function g has the
following asymptotics

g(ω, ω0, ν) ∼
∑
m

gm(ω, ω0, ν) =
∑
m

eiκ(ν)θmGm(ν),

(10)
where the summation is held over all diffraction tra-
jectories going from ω0 to ω, θm is the length of the
m-th trajectory,

κ(ν) =
{

ν, Im[ν] > 0,
−ν, Im[ν] < 0,

(11)

Gm(ν) are slowly varying functions of ν (compar-
atively to the exponentials). The terms are sorted
according to the rule θm+1 ≥ θm. The first term
(we assign index m = 0 to it) is the direct wave
coming along the shortest trajectory.

We will see below that the terms obeying the
relation θm < π correspond to the scattered field
components of the initial conical problem.

Let us compute several first terms of the series
(10) in some cases.

The zeroth term and the reflected wave.
The direct wave has form

g0(ω, ω0, ν) = −eiπ/4

2
eiκθ

√
2πκ sin θ

, (12)

where θ is the angular distance between ω0 and ω.
This expression was obtained by standard ray tech-
nique. Namely, the ray Ansatz eiκθ was matched
with the outer (far field) asymptotics of the Green’s
function of an entire plane.

The asymptotics of the reflected ray is as follows

g1(ω, ω0, ν) = −R
eiπ/4

2
eiκθ1

√
2πκ sin θ1

. (13)

Here R is the reflection coefficient for the surface
(R = 1 for the Neumann boundary and R = −1
for the Dirichlet boundary), θ1 is the length of the
reflected ray.

This asymptotics is not valid when θ1 ≈ π.
Diffracted edge wave. This is the ray

diffracted a single time by an edge of the flat cone.
To compute this term we use the locality principle:
we assume that the wave approaching the edge has
approximately the structure of a plane wave on a
plane. Then we study the process of diffraction of
a plane wave by a half-line. Finally, we perform
matching between the diffracted cylindrical wave

and the ray Ansatz on the sphere. The result is as
follows:

g2(ω, ω0, ν) =
ieiκ(ν)(θ21+θ21)TD,N (φ1, φ2)
4πκ(ν)

√
sin(θ21) sin(θ22)

(14)

where θ11 and θ12 are distances between the source
and the edge, and between the receiver and the
edge. The value TD,N (φ1, φ2) is the trigonometrical
factor. The angles φ1, φ2 describe locally the scat-
tering process. These angles are shown in Fig. 3.
The values TD,N are taken from the planar theory
of diffraction by a half-line, and they are equal to

TD(φ1, φ2) =
cos(φ1/2)

sin((φ2 + π)/2)− sin(φ1/2)
−

cos(φ1/2)
sin((φ2 − π)/2)− sin(φ1/2)

, (15)

TN (φ1, φ2) =
cos(φ2/2)

sin((φ2 + π)/2)− sin(φ1/2)
−

cos(φ2/2)
sin((φ2 − π)/2)− sin(φ1/2)

, (16)
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Figure 3: Diffraction by an edge

Secondary diffraction. Consider the wave go-
ing along the trajectory shown in Fig. 4. The wave
goes from ω0 to the first edge of the scatterer,
then goes along the scatterer, approaches the sec-
ond edge and goes to ω. In fact, the ray travels
along two different trajectories. The first trajec-
tory goes along the upper face of the scatterer, and
the second one goes along the lower face.

For the Neumann case the representation is as
follows:

g3(ω, ω0, ν) =
e−iπ/4

4
×

[TN (π, φ1)TN (φ2, π) + TN (−π, φ1)TN (φ2,−π)]×
eiκ(θ31+Φ+θ32)

(2πκ)3/2(sin(θ31) sin(Φ) sin(θ32))1/2
, (17)
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Figure 4: Secondary edge diffraction

where κ = κ(ν).
In the Dirichlet case the formula is a bit more

complicated.
Penumbral zone. The expansion (14) is valid

only when the geodesic arc connecting ω0 and ω
pass far enough from both edges of the scatterer.
We are also interested in the case when this ray
passes quite close to this point. In this case a
penumbral field can be observed on the sphere. Us-
ing the technique of phase integrals we obtain the
following representation of the penumbral field:

gpen(ω, ω0, ν) = − eiκθ+iπ/4

4
√

2πκ sin(θ)
I(±

√
κ∆θ). (18)

Here κ = κ(ν),

I(z) =
2e−iπ/4

√
π

∞∫

z

eiτ2
dτ, (19)

∆θ is the difference between the lengths of the ray
going from ω0 to ω through the edge, and the direct
ray from ω0 to ω. θ is the length of the direct ray.
Sign + is chosen if the direct ray is obstructed by
the scatterer, and sign − is chosen when the direct
ray is not obstructed.

The asymptotics (19) is valid if the point ω is far
from the point opposite to ω0, i.e. θ is not close to
π.

Focal point proximity. Finally, consider the
case when θ is close to π, and thus ω is close to the
point ω′0 opposite to ω0. Introduce local polar co-
ordinates near the point ω′0. Let the point ω have
coordinates (θ, φ) in this system. A set of geomet-
rical rays goes from ω0 to ω′0. Some of the rays are
obstructed by the scatterer. Let the rays which are
not obstructed occupy the angles in the set (φ1, φ2)
(see Fig. 5).
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Figure 5: Observation point in the proximity
of the focal point

The field in this case is found using the formula

gfoc(ω, ω0, ν) = −eiπκ

4π

φ2∫

φ1

exp{−iκ θ cos(τ − φ)}dτ.

(20)

4 Analysis of the integral (7)

To simplify (7) substitute Bessel’s function by
Sonin’s integral. As the result, get

u(r, ω) = e3π i/4

√
2

πkr
×

∫

Γ

eikr cos τ

∫

γ1+γ2

eiντ−iνπg(ω, ω0, ν) νdν dτ. (21)

where contour Γ is shown in Fig. 6.
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Figure 6: Contour of integration for the Bessel
function

Here we split contour γ into two parts: γ1 is a
part of contour going from infinity to 0 below the
real axis, and γ2 goes from 0 to infinity along above
the real axis.

Split the inner integral into two integrals I1 and
I2, corresponding to integration along γ1 and γ2, re-
spectively. According to the asymptotic estimation
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performed above, we can expect that the function
I1 has singularities at the points

τm = π + θm, (22)

where the θm are the ray lengths from (10). Respec-
tively, I2 should have singularities at the points

τm = π − θm. (23)

First consider the integral of the form (21) con-
taining only I1, i.e. with integration over γ1. Since
there are no singular points on the segment (0, π),
one can deform contour Γ into a contour Γ′ lying
in the areas of the exponential decay of the func-
tion exp{ikr cos t} (see Fig. 6). Thus, the integral
describes a linear combination of the functions be-
having as eikr and e−ikr for large r. It is well
known that the function behaving as e−ikr disap-
pears when both components I1 and I2 are taken
into account. Thus, it can be ignored. The com-
ponent behaving as eikr (taken from I1 + I2) is the
spherical wave diffracted by the tip of the cone.
This wave is well studied by Smyshlyaev and co-
authors, so we do not study it here (we remind
that here we study all waves except the spherical
wave). This means that the part with I1 contains
no components we are interested in.

Now consider the integral with I2. Since some
of the values θm can be located between 0 and π,
we cannot deform Γ into Γ′. Instead, we put the
straight part of the contour onto the segment (0, π)
of the real axis of τ bypassing above the singulari-
ties.

We base our consideration on the assumption
that for large r the integral (21) can be estimated
as a sum of contributions of the singular point be-
longing to the segment (0, π), and each contribu-
tion is provided by a small proximity of the singular
points, i.e.

u(r, ω) =
∑
m

um(r, ω). (24)

The terms um correspond to the terms of the spher-
ical Green’s function gm, for which 0 < θm < π, i.e.
there is finite number of terms in the sum (24).

Consider a vicinity of the singularity τm = π−θm

belonging to the segment (0, π). Near this point
approximate the cosine function by its Taylor series
up to the quadratic term:

exp{ikr cos τ} ≈

exp
{

ikr

(
− cos θm − ξ sin θm +

ξ2

2
cos θm

)}
,

(25)
ξ = τ − τm. Substituting this approximation into
the integral and changing the order of integration,
obtain a representation for the terms of (24):

um(r, ω) = 2e3π i/4

√
2π

kr
e−ikr cos θm×

∞∫

0

K(kr, ν, θm)e−iνθmg+
m(ω, ω0, ν)ν dν (26)

where

K(z, ν, θ) =

1
2π

∞∫

−∞
exp

{
i(ν − z sin θ)ξ +

i

2
zξ2 cos θm

}
dξ,

(27)
and g+

m is the asymptotics of gm taken in the up-
per half-plane (i.e. with κ(ν) = ν). Performing the
integration, obtain that

K(z, ν, θ) =
e−iπ/4

√−2πz cos θ
exp

{
−i

(ν − z sin θ)2

2z cos θ

}
.

(28)
The integral formula (26) with the kernel (28) is the
main result of the paper. We claim that together
with the asymptotics g+

m obtained above this for-
mula describes uniformly the most interesting field
components.

5 Some properties of formulas (26), (28)

Ray asymptotics. The function K defined by
(28) and treated as a function of ν is a complex
(oscillating) Gaussian centered at z sin θ and hav-
ing width ∼

√
z cos θ. We remind that accord-

ing to (26) z = kr, thus the width of the Gaussian
grows as k →∞, however, the center position grows
faster. If sin θ is not close to zero and if g+

m behaves
as

exp{iνθm}ναm as ν →∞, (29)

then for kr large enough one can neglect variation
of g+

m(ν)ν in the area covered by the width of the
Gaussian and substitute the function in the integral
(26) by its value at ν = kr sin θ. In this case K
acts as a delta-function δ(ν − z sin θ), giving the
following approximation

um(r, ω) ≈ 2e3πi/4
√

2πkre−ikr cos θm×
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g+
m(ω, ω0, kr sin θm) sin θm.

(30)
This formula is very important. It transfers the
ray (or sometimes penumbral) asymptotics on the
unit sphere into asymptotics in the 3D space. A
necessary condition of validity of this formula is as
follows: √

kr sin θm À
√
| cos θm| (31)

This relation for large kr denotes that the point is
far from a singular ray corresponding to the con-
ical penumbra, i.e. to the set of points where the
spherical diffracted wave touches some other wave
front (namely, the front of wave corresponding to
the m-th diffracted wave).

Beside the relation (31), one should study the
behavior of the function g+

m(ν) in each particular
case to find whether the function is smooth com-
paratively to the scale

√
kr sin θm.

Connection with the parabolic cylinder
functions. If g+

m is a power function then the in-
tegral (26) is closely connected with the function of
parabolic cylinder. Namely, if

g+
m = A(ω, ω0)eiνθmνs (32)

then

um = −A
2iπiπs/4(kr)s/2(− cos θm)(s+1)/2

(s + 2)Γ(−s− 2) sin(πs)
×

exp
{
−ikr

(
cos θm +

sin2 θm

2 cos θm

)}
×

D−s−2

(
e3πi/4 sin θm

√
kr

− cos θm

)
. (33)

Thus, the asymptotics built here is closely con-
nected with the conical penumbral asymptotics
constructed and studied in [1, 2, 3]

6 Some examples of asymptotics obtained
with the new formula

Wave diffracted by edge. Conical penumbra.
Consider the conical penumbra. Use formula (14)

for the g+
m component and (26) without any addi-

tional simplifications. As the result, get the expres-
sion in terms of the Fresnel integral:

u = − TD,N (φ1, φ2)eikr+iπ/4

2
√

2πkr
√

sin θ21 sin θ22

I

(
±

√
kr

2
sin θ

)
.

(34)
where I is defined by (19).

Proximity of the shadow of cone tip. Con-
sider the particular case of ω0 located at the South
pole, i.e. having coordinate Θ = π. Look for the
field in the proximity of the North pole, i.e. for the
point ω = (Θ, φ) with Θ ≈ 0. Use formula (20) for
g+

m and substitute the result into (26). The result
is as follows:

u(Θ, φ) = −eiπ/2eikr

2πkr
×

φ2∫

φ1

∞∫

0

exp
{

i
ν2 + (krΘ)2

2kr
− iνΘcos(τ − φ)

}
ν dν dτ.

(35)
This expression matches the Fresnel integral writ-
ten for the screen with a quarter-plane cut from
it.

7 Conclusions

Approximate formula (26) is the main formula
connecting the spherical Green’s function and
the asymptotics of the components of the field
diffracted by a cone. In many cases (the major ex-
ception is the conical penumbra) this formula can
be reduced to a simpler expression (30).

Author is grateful to Prof. V.M. Babich and Prof.
M.A. Lyalinov for fruitful discussions and motiva-
tion of the work.
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