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Abstract

The problem of scattering of a plane wave by two ideal strips lying in one plane is studied. The Wiener-
Hopf functional equation is formulated and studied. The following results are obtained. 1) The embedding
formula is derived. This formula enables to express the far-field diagram, depending on two variables (the
angle of incidence and the angle of scattering) as the combination of 4 functions depending on one variable.
2) The ordinary differential equation with respect to the spectral variable is derived for the components of
the far-field diagram. 3) The evolution equation describing the dependence of the far-field diagram on the
parameters of the problem (such as the coordinates of the edges of the scatterer) are derived.

1 Formulation of the problem

Let the 2D Helmholtz equation

∆u + k2
0u = 0 (1.1)

be valid on the (x, y) plane. The cross-sections of two strips coincide with the segments (a1, a2) and (a3, a4) of
the x-axis (see Fig. 1). We imply that the time dependence everywhere has the form e−iωt. Sometimes it would
also be useful to imply that k0 has a small positive imaginary part corresponding to small dissipation in the
media.

Figure 1: Geometry of the problem

Let the Dirichlet boundary conditions

u = 0 (1.2)

be valid on the strips.
The incident field is a plane wave coming from the upper half-plane

uin = e−ik∗x−i
√

k2
0−k2∗y, (1.3)

where k∗ = k0 cosψ; ψ is the angle of incidence.
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Due to the obvious symmetry of the scattered field, a problem with mixed boundary conditions can be
formulated for it:

usc(x, 0) = −e−ik∗x for x ∈ (a1, a2) ∪ (a3, a4), (1.4)

∂

∂y
usc(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (1.5)

It is clear that one can consider the field only in the half-plane y > 0.
The radiation conditions are satisfied at infinity. The scattered field should not contain the components

coming from infinity or growing at infinity. These conditions will be taken into account when constructing the
integral representation of the scattered field.

Meixner edge conditions should be taken into account. Here we demand that the total field should have the
asymptotic near the edges that is similar to the asymptotics for the static problem, namely

u ∼ r1/2, (1.6)

where r is the distance between the observation point and the nearest edge. The normal derivative on the strips,
therefore, behaves like r−1/2.

2 Derivation of the functional equation

Here we follow [1]. Represent the scattered field for y > 0 in the integral form

usc(x, y) =
1
2π

∞∫

−∞
A(k)e−ikx+i

√
k2
0−k2ydk. (2.1)

Here the branch of the square root is chosen such that the field satisfies the radiation condition. Namely, it
corresponds to the path of integration bypassing below the point k = k0 and above the point k = −k0.

Perform the Fourier transformation. The spectral function A(k) can be expressed in terms of the values of
u(x, 0):

A(k) =

∞∫

−∞
usc(x,+0)eikxdx. (2.2)

Taking into account the boundary conditions (1.4), (1.5), we rewrite (2.2) in the form

A(k) =




a1∫

−∞
+

a3∫

a2

+

∞∫

a4


usc(x, 0)eikxdx + i

−ei(k−k∗)a1 + ei(k−k∗)a2 − ei(k−k∗)a3 + ei(k−k∗)a4

k − k∗
. (2.3)

On the other hand, the spectral function A(k) can be calculated through the normal derivative of the field:

i
√

k2
0 − k2A(k) =

∞∫

−∞

∂usc(x, +0)
∂y

eikxdx =




a2∫

a1

+

a4∫

a3


 ∂usc(x, +0)

∂y
eikxdx. (2.4)

Comparing (2.3) with (2.4) we obtain the functional equation:

U0(k) + U1(k) + U2(k) + U3(k) + U4(k) = 0 (2.5)
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for all real k, where

U0(k) =

a1∫

−∞
usc(x, 0)eikxdx− iei(k−k∗)a1

k − k∗
,

U1(k) =
i√

k2
0 − k2

a2∫

a1

∂usc(x, 0)
∂y

eikxdx.

U2(k) =

a3∫

a2

usc(x, 0)eikxdx +
iei(k−k∗)a2

k − k∗
− iei(k−k∗)a3

k − k∗
, (2.6)

U3(k) =
i√

k2
0 − k2

a4∫

a3

∂usc(x, 0)
∂y

eikxdx.

U4(k) =

∞∫

a4

usc(x, 0)eikxdx +
iei(k−k∗)a4

k − k∗
.

It is clear that the spectral functions U0 . . . U4 are connected with the field defined on the fragments, in
which the x-axis is decomposed by the points a1 . . . a4.

Note that the spectrum of the field A(k) is equal to

A(k) = − (U1(k) + U3(k)) .

We introduce the far-field diagram as

f(k, k∗) ≡ −
√

k2
0 − k2A(k) =

√
k2
0 − k2 (U1(k) + U3(k)) . (2.7)

It is common to express f as a function of the angular variables ϕ and ψ (the angles of scattering and incidence,
respectively). The angular variables are connected with the wavenumber variables k, k∗ via the relations

k = −k0 cosϕ, k∗ = k0 cosψ. (2.8)

We shall use below the obvious corollary of the functional equation (2.5). In the set of five unknown functions
U(k) there are only 4 linearly independent, i.e. any unknown function can be written as a linear combination
of 4 other functions.

3 Analytic properties of the unknown functions

Functional equation (2.5) contains 5 unknown functions. To make it possible to solve this equation, one should
impose some additional restrictions on the unknown functions.

Consider the definitions of the unknown functions (2.6). These formulas are close to the Fourier (Laplace)
transforms of the functions defined on a half-line or a segment. The properties of such transforms are well
known. For example, the Fourier transform of a function defined on a positive half-axis (such as U4(k) for
a4 = 0) is a regular function in the upper half-plane of the complex variable k, moreover, its growth in the
upper half-plane is determined by the asymptotics of function usc(x, 0) near the edge x = a4, known from the
Meixner’s conditions.

Applying known properties of Fourier transformation to the definitions (2.6), we obtain that:

• the function U0 is regular in the lower half-plane (maybe with the exception of the point k = k∗, where
there is a pole with the known residue);

• the function U4 is regular in the upper half-plane (maybe with the exception of the point k = k∗, where
there is a pole with the known residue);
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• the functions U2,
√

k2
0 − k2U1,

√
k2
0 − k2U3 are entire on the whole k plane.

Actually, as it will be clear later, these functions can have only the following singularities: k = ∞, k∗, ±k0.
The singularity k = k∗ causes no problems: only simple poles can exist in it. The behaviour of the unknown
functions at k = ±k0 is more complicated, since the functions can have branch points there.

Note that k0 belongs to the upper half-plane and −k0 belongs to the lower half-plane. It means that the
properties mentioned above bring some useful information concerning the behaviour of the unknown functions
at the branch points.

Besides, the following estimations of growth based on the Meixner’s conditions are valid as |k| → ∞:

U0(k) ∼ k−3/2eika1 for Im[k] < 0, U4(k) ∼ k−3/2eika4 for Im[k] > 0,

U1(k) ∼ k−3/2eika2 for Im[k] < 0, U1(k) ∼ k−3/2eika1 for Im[k] > 0,

U2(k) ∼ k−3/2eika3 for Im[k] < 0, U2(k) ∼ k−3/2eika2 for Im[k] > 0, (3.1)
U3(k) ∼ k−3/2eika4 for Im[k] < 0, U3(k) ∼ k−3/2eika3 for Im[k] > 0,

This fact is not easy to prove, but equation (2.5) with the analytic restrictions listed in this section is enough
to determine the unknown functions. We shall call the set of the functional equation, conditions of analyticity
and the estimations of growth having the form (3.1) a functional problem. Below we shall formulate some similar
functional problems with slightly different asymptotics.

Following [1], we can derive a confluent Fuchsian ordinary differential equation (ODE) of order 4 for the
functions U . The coefficients of this ODE are known up to several constant parameters. There are several
monodromy restrictions that enable to determine these parameters.

However, the number of unknown parameters in this case is rather big and the numerical procedure is rather
complicated. Also the research of [1] does not utilize the benefits of the embedding formula. That is why here
we develop another technique (which is, certainly, is closely connected to that of [1]).

4 Auxiliary solutions, auxiliary functional problems and the embed-
ding formula

The functions U0, U1, U2, U3, U4 depend on two variables: k and k∗. In the previous section we discussed the
properties of these functions taking into account their dependence only on the first variable (the second variable
was considered as a parameter of the problem). Here we shall discuss the dependence on the second variable.
It seems surprising, but it is possible to extract the dependence on the angle of incidence.

First, consider the estimations of growth (3.1). It seems to be clear that each asymptotics is connected with
one of 4 edges a1 . . . a4.

Introduce 4 auxiliary functional problems similar to the one formulated above. Namely, consider 4 sets of
functions indexed by m (note that m is the upper index, not a power) {Um

0 (k), Um
1 (k), Um

2 (k), Um
3 (k), Um

4 },
where m = 1 . . . 4. For each m formulate a functional equation similar to (2.5):

Um
0 (k) + Um

1 (k) + Um
2 (k) + Um

3 (k) + Um
4 (k) = 0 (4.1)

Formulate the conditions of analyticity similar to those formulated in the previous section:

• the function Um
0 is regular in the lower half-plane;

• the function Um
4 is regular in the upper half-plane;

• the functions Um
2 ,

√
k2
0 − k2Um

1 ,
√

k2
0 − k2Um

3 are entire on the whole k plane.

Note that now the possibility of the pole at k = k∗ is excluded.
Finally, for each m define a set of asymptotics of the form (3.1). However, it is necessary to weaken the

restrictions related to the edge am, namely we replace the order of growth k−3/2 with k−1/2, i.e. we allow
correspondent functions to grow faster.
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For example, for m = 2 we find in (3.1) the asymptotics associated having a2 in the exponent and weaken
them. The result is:

U2
0 (k) ∼ k−3/2eika1 for Im[k] < 0, U2

4 (k) ∼ k−3/2eika4 for Im[k] > 0,

U2
1 (k) ∼ k−1/2eika2 for Im[k] < 0, U2

1 (k) ∼ k−3/2eika1 for Im[k] > 0,

U2
2 (k) ∼ k−3/2eika3 for Im[k] < 0, U2

2 (k) ∼ k−1/2eika2 for Im[k] > 0, (4.2)
U2

3 (k) ∼ k−3/2eika4 for Im[k] < 0, U2
3 (k) ∼ k−3/2eika3 for Im[k] > 0.

as |k| → ∞. (Note the asymptotics for U2
1 , Im[k] < 0 and U2

2 , Im[k] > 0). Similarly we obtain the sets of
asymptotic restrictions for other 3 values of m.

Let us discuss briefly the physics related to the auxiliary functional problems formulated here. Consider a
particular value of m. Instead of a plane incident wave, take a point source located near the edge x = am, y = 0.
Since there is no possibility to study the point source located just at the edge, let the source be located at the
distance r from the edge (r is small), and let the limit r → 0 be taken. One can see that the amplitude of the
source should be proportional to r−1/2 providing the existence of finite limit for this procedure.

The sets of unknown functions are determined by the auxiliary functional problems up to m constant factors.
To fix this uncertainty we declare that as |k| → ∞

U1
1 = k−1/2eika1 + O(k−3/2eika1) for Im[k] > 0,

U2
2 = k−1/2eika2 + O(k−3/2eika2) for Im[k] > 0,

(4.3)
U3

3 = k−1/2eika3 + O(k−3/2eika3) for Im[k] > 0,

U4
4 = k−1/2eika4 + O(k−3/2eika4) for Im[k] > 0,

i.e. we demand that the point sources near the edges have the unit strength in some sense. Chosen branch of
the square root is real on the real positive half-axis.

The emebedding formula expresses the relation between the solution of initial diffraction problem (with the
plane-wave incidence) and the auxiliary problems. First we ”guess” the form of this formula, then we study the
coefficients and prove that they are have a very simple structure.

Let us find the coefficients α1, α2, α3, α4, depending on k and k∗, such that

U1(k, k∗) = α1U
1
1 (k) + α2U

2
1 (k) + α3U

3
1 (k) + α4U

4
1 (k),

U2(k, k∗) = α1U
1
2 (k) + α2U

2
2 (k) + α3U

3
2 (k) + α4U

4
2 (k),

(4.4)
U3(k, k∗) = α1U

1
3 (k) + α2U

2
3 (k) + α3U

3
3 (k) + α4U

4
3 (k),

U4(k, k∗) = α1U
1
4 (k) + α2U

2
4 (k) + α3U

3
4 (k) + α4U

4
4 (k).

Note that (4.4) and the functional equations yield also

U0(k, k∗) = α1U
1
0 (k) + α2U

2
0 (k) + α3U

3
0 (k) + α4U

4
0 (k). (4.5)

The equations (4.4) can be solved as a system of linear algebraic equations with respect to αm using the
Cramer’s rule. The solution can be found immediately:

α1 =
D1

D
, α2 =

D2

D
, α3 =

D3

D
, α4 =

D4

D
, (4.6)

where D1 . . . D4 and D are the determinants:

D =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

∣∣∣∣∣∣∣∣
, D1 =

∣∣∣∣∣∣∣∣

U1 U2
1 U3

1 U4
1

U2 U2
2 U3

2 U4
2

U3 U2
3 U3

3 U4
3

U4 U2
4 U3

4 U4
4

∣∣∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣∣∣

U1
1 U1 U3

1 U4
1

U1
2 U2 U3

2 U4
2

U1
3 U3 U3

3 U4
3

U1
4 U4 U3

4 U4
4

∣∣∣∣∣∣∣∣
,

D3 =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U1 U4
1

U1
2 U2

2 U2 U4
2

U1
3 U2

3 U3 U4
3

U1
4 U2

4 U4 U4
4

∣∣∣∣∣∣∣∣
, D4 =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U3
1 U1

U1
2 U2

2 U3
2 U2

U1
3 U2

3 U3
3 U3

U1
4 U2

4 U3
4 U4

∣∣∣∣∣∣∣∣
(4.7)
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These determinants have very interesting properties. Consider D as an example.
Due to the representation (4.7), we have the regularity restriction on the behaviour of all functions in the

upper half-plane of the variable k, namely each element of this determinant is either a regular function in the
upper half-plane or can be represented as a product of a regular function multiplied by (k2

0 − k2)−1/2. Beside
that, we have the estimation of growth in the upper half-plane for each function. Collecting all this information
together, we conclude that the product (k2 − k2

0)D(k) is regular in the upper half-plane and D grows in the
upper half-plane like k−2eik(a1+a2+a3+a4).

The function (k2 − k2
0)e

−ik(a1+a2+a3+a4)D(k) is regular in the upper half-plane and grows there no faster
than a constant.

Due to the functional equations and the properties of the determinants, the same determinant D can be
written in another form:

D = −

∣∣∣∣∣∣∣∣

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
0 U2

0 U3
0 U4

0

∣∣∣∣∣∣∣∣
(4.8)

Using this representation we can study the properties of D in the lower half-plane. Namely, we can prove that
the function (k2−k2

0)e
−ik(a1+a2+a3+a4)D(k) is regular in the lower half-plane, and it grows there no faster than

a constant.
Apply the Louville theorem to the function (k2 − k2

0)e
−ik(a1+a2+a3+a4)D(k). According to the properties

mentioned above, this function should be identically equal to a constant. Taking into account the asymptotics
(4.3), we find that:

D(k) =
eik(a1+a2+a3+a4)

k2 − k2
0

. (4.9)

Using the same technique, we find the expressions for other determinants:

Dm(k) =
Cm(k∗)eik(a1+a2+a3+a4)

(k2 − k2
0)(k − k∗)

, m = 1 . . . 4, (4.10)

where the values Cm do not depend on the variable k.
Therefore,

Uν(k, k∗) =
1

k − k∗

4∑
m=1

Cm(k∗)Um
ν (k), (4.11)

where ν = 0 . . . 4, and this is the weakest form of the embedding formula.
The constants can be taken from the asymptotics of the functions Uν . Namely, let the following asymptotics

be valid:

U1(k, k∗) = c1(k∗)k−3/2eika1 + O(k−5/2eika1)
U2(k, k∗) = c2(k∗)k−3/2eika2 + O(k−5/2eika2)

(4.12)
U3(k, k∗) = c3(k∗)k−3/2eika3 + O(k−5/2eika3)
U4(k, k∗) = c3(k∗)k−3/2eika4 + O(k−5/2eika4)

as k → i∞. Substitute these asymptotics into (4.8). By calculating the asymptotics of the determinants Dm in
the upper half-plane, we obtain the expression (4.10) with Cm(k∗) = cm(k∗).

The physical meaning of the constant c1 . . . c4 is the following. They are connected with the edge asymptotics
of the field, caused by the incident plane wave falling at the angle ψ. It follows from the reciprocity theorem
that this problem can be reversed, i.e. one can put the source near one of the edges and find the amplitude of
the outgoing wave at the angle ψ. We remind that the auxiliary functions are the spectral functions related to
the source near one of the edge, The detailed calculations show that

Cm(k∗) = i
√

k2
0 − k2∗[U

m
1 (−k∗) + Um

3 (−k∗)]. (4.13)
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(This formula can be derived in terms of the theory of functional problems developed here, however, the proof
is rather complicated and here we do not describe it.)

Finally, the far-field diagram of the field with a plane wave incidence becomes expressed in the form

f(k, k∗) =
i

k − k∗

4∑
m=1

fm(k)fm(−k∗), (4.14)

where

fm(k) =
√

k2
0 − k2 (Um

1 (k) + Um
3 (k)) .

Representation (4.14) is the embedding formula for our problem. It is obvious how this formula can be
generalized on the case of several strips located in one plane: the summation should be performed over all edges
of the system.

Earlier the embedding formula was obtained in [2] for a single strip and in [3] for several strips, so this result
is basically not new. However, the formula given in [3] has much more complicated form.

According to the embedding formula, one needs to find the auxiliary functions, which depends on a single
variable k, to have the possibility to calculate the far-field diagram for each k and k∗.

5 Spectral ordinary differential equations for the auxiliary functions

Unfortunately, there is no compact representation for Um
ν . However, in this section we prove that these functions

obey an ordinary differential equation (ODE) with respect to the variable k; the coefficients of this equation are
rational functions of k having rather simple form. Thus, the auxiliary functions Um

ν (k) can be found numerically
by solving the corresponding equation with appropriate boundary conditions.

The scheme of constructing the spectral ODE here is similar to that of constructing the embedding formula.
Namely, we guess the form of the equation, solve a system of linear algebraic equations to find the coefficients of
the ODE and prove that the coefficients are rational functions of k by using the Liouville theorem. We shall not
perform the analysis in all details, however the calculations are very simple. Some discussion of this procedure
can be found in [1].

Introduce the matrix notation for the auxiliary functions:

Û(k) =




U1
1 U1

2 U1
3 U1

4

U2
1 U2

2 U2
3 U2

4

U3
1 U3

2 U3
3 U3

4

U4
1 U4

2 U4
3 U4

4


 .

Denote the differentiation with respect to k by prime. Let us find the matrix K̂ of the dimension 4×4, such
that the following equation is valid:

Û ′ = K̂Û . (5.1)

This is the spectral ODE. It follows from the functional equations (4.1) that the similar ODE should be valid
for the remaining column of the unknown functions:




U1
0

U2
0

U3
0

U4
0




′

= K̂




U1
0

U2
0

U3
0

U4
0


 .

The equation (5.1) can be formally solved with respect to the matrix K̂. The elements of this matrix become
expressed as the ratios of the determinants:

K̂mn = Dmn(k)/D(k), (5.2)
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where the determinant D is given by (4.7) and each determinant Dmn is obtained by substituting of the n-th
column of D by the derivative of the m-th column. For example,

D11 =

∣∣∣∣∣∣∣∣

(U1
1 )′ U2

1 U3
1 U4

1

(U1
2 )′ U2

2 U3
2 U4

2

(U1
3 )′ U2

3 U3
3 U4

3

(U1
4 )′ U2

4 U3
4 U4

4

∣∣∣∣∣∣∣∣
.

Note that for each determinant Dmn there exists an alternative representation similar to (4.8) expressing this
determinant in terms of the functions Um

1 , Um
2 , Um

3 , Um
0 . Using two possible representations of each determinant

we can study the behaviour of the determinants in the lower and upper half-planes of the variable k. After
applying the Liouville theorem, we obtain that each element of K̂ can be represented as P2(k)/(k2

0 − k2), where
P2 is a quadratic polynom.

After a more detailed study of growth of each element of K̂ we can present the coefficients in the form:

K̂(k) =




ia1 0 0 0
0 ia2 0 0
0 0 ia3 0
0 0 0 ia4


 +

1
k − k0

K̂+ +
1

k + k0
K̂−, (5.3)

where K̂+ and K̂− are some matrices, depending on k0 and a1 . . . a4, but not depending on k.
Now we know the coefficients of the equation (5.1) up to 32 constant parameters. Using the analyticity

and growth restrictions for the functions Um
n , one can formulate the link problem for finding the unknown

constants. One can show that the number of links is equal to the number of unknown constants (a similar result
was obtained in [1]). Moreover, the same analyticity and growth restrictions can be used to specify the functions
Um

n among the other solutions of the equation (5.1). However, this method seems to be too complicated for
practical calculations, since the presence of global monodromy restrictions leads to a very complicated eigenvalue
problem. In [4] a simple and effective approximate technique based on the diffraction series is developed for a
single strip problem. The same technique can be developed for the case of several strips for practical calculations.

Equation (5.1) with the coefficient (5.3) is the most important equation related to the problem of diffraction
by several strips. Two main reasons exist for saying that this equation is a generalization of the Wiener-Hopf
method. First, we found the functions, to which the Liouville theorem is applicable. These functions are the
Wronsky-type determinants D and Dmn. The application of the Liouville theorem is the key point of the
Wiener-Hopf method. Second, the method developed here can be applied to the classical Sommerfeld problem
of diffraction by an ideal half-plane. It leads to a degenerated ODE of order 1. The coefficient K in this case is
equal to the logarithmic derivative of the unknown spectral function. The solution coincides with that obtained
by the Wiener-Hopf method.

6 Evolution equations

In this section we shall study the dependence of the auxiliary functions Um
n on the parameters a1 . . . a4. We

shall call the equations describing this dependence the evolution equations. Another important issue stued in
this section is the dependence of the matrices K̂+, K̂− (containing undetermined parameters) on a1 . . . a4.

Consider the derivatives of the functions Um
n with respect to aj , j = 1 . . . 4. Namely, let us find the matrices

Â1 . . . Â4 such that

∂

∂aj
Û = ÂjÛ , (6.1)

We again follow the procedure used above for the derivation of the embedding formula and the spectral
ODE. The equation (6.1) can be formally solved with respect to the matrix Âj . Each element of the matrix Âj

can be represented as a ratio of the determinants

Aj
mn = Dj

mn(k)/D(k),
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where Dj
mn is the determinant obtained from D by substituting of the n-th column by the derivative of the

m-th column with respect to aj . For example,

Dj
11 =

∣∣∣∣∣∣∣∣

(U1
1 ),aj U2

1 U3
1 U4

1

(U1
2 ),aj

U2
2 U3

2 U4
2

(U1
3 ),aj

U2
3 U3

3 U4
3

(U1
4 ),aj U2

4 U3
4 U4

4

∣∣∣∣∣∣∣∣
.

Using the functional equations (4.1), we can construct an alternative representation for each Dj
mn in terms of

the functions Um
1 , Um

2 , Um
3 , Um

0 . Two representations describe the behaviour of each element in the upper and
lower half-planes. We can apply Liouville theorem and find that all elements of Âj are the polynomials of k
having degree no more than 1 (i.e. they are either constants or linear functions of k).

Introduce the constants Cm
n as the following coefficients in the asymptotics:

Um
n = δnmk−1/2eikam + Cm

n k−3/2eikam + O(k−5/2eikam), n = 1 . . . 4, (6.2)

as k → i∞; δmn is the Kronecker’s delta.
Now we can substitute these asymptotics into the determinants related to the elements of Âj . The result is:

Aj
mn(k) = ikδjmδmn + iCm

n (δjn − δjm). (6.3)

Let us represent the coefficients Cm
n in terms of the elements of the matrices K̂± (see (5.3)). Substitute the

asymptotics (6.2) into the determinants D(k) and Dmn(k). Consider first the determinant D. From one hand,
it has the form (4.9). From the other hand, the asymptotics yield

D(k) = k−2 + (C1
1 + C2

2 + C3
3 + C4

4 )k−3 + O(k−4).

Comparing these representations we conclude that

C1
1 + C2

2 + C3
3 + C4

4 = 0 (6.4)

Now consider the determinants Dmn (see (5.2)). The diagonal elements have the asymptotics

Dmm(k) = iamk−2 + (C1
1 + C2

2 + C3
3 + C4

4 − 1/2)k−3 + O(k−4)

Comparing this representation with (5.3) and taking into account (6.4), we conclude that

K+
mm + K−

mm = −1/2 (6.5)

The non-diagonal elements have the asymptotics

Dmn = iCm
n (an − am)k−3 + O(k−4).

Therefore

K+
mn + K−

mn = i(an − am)Cm
n for m 6= n. (6.6)

Now we can represent the coefficients of the equations (6.1) in the form

Aj
mn(k) = ikδjmδmn +

(K+
mn + K−

mn)(δjn − δjm)
an − am

, (6.7)

where we imply that the second term is equal to zero if an = am. Now the coefficients of the evolution equation
(6.1) become expressed in terms of the coefficients of the spectral ODE (5.1).

Equations (6.1) describe the evolution of the auxiliary functions Um
n when the parameters of the problems

(namely, the coordinates of the edges) are changed. However, the coefficients of the evolution equations (6.1)
also depend on the coordinates of the edges. Now we are going to derive the equations that describe the changes
of the elements of K̂± when the parameters a1 . . . a4 are changed.
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The following derivative can be calculated by two different methods:

∂2Û

∂k∂aj
=

(
∂K̂

∂aj
+ K̂Âj

)
Û =

∂2Û

∂aj∂k
=

(
∂Âj

∂k
+ ÂjK̂

)
Û .

Multiply this equation by Û−1. Note that the determinant of this matrix is not zero almost everywhere. This
yields

∂K̂

∂aj
=

∂Âj

∂k
+ [Âj , K̂]. (6.8)

Substitute (5.3) and (6.7) into (6.8). Note that the equation (6.8) must be fulfilled identically for all values
of k. So we can expand (6.8) into partial fractions and write separate equations for each denominator. The
straightforward calculations show that (6.8) is equivalent to

∂K±
mn

∂aj
= ±ik0K

±
mn(δmj − δnj) +

(K+
mj + K−

mj)K
±
jn

aj − am
+

(K+
jn + K−

jn)K±
mj

an − aj
+

∑

l 6=j

(K+
jl + K−

jl )K
±
ln

aj − al
+

∑

l 6=j

(K+
lj + K−

lj )K±
ml

al − aj
. (6.9)

We imply that the second term in the r.-h.s. of (6.9) is equal to zero if m = j, and the third term is equal to
zero if n = j.

Thus we obtained a system of nonlinear evolution equations for the coefficients of (5.1). Now we can outline
the scheme of the numerical procedure for finding the far-field diagram for some incident angle.

1. Choose any arbitrary set of values a1 . . . a4 and calculate the elements of the matrix K̂. One can choose
most symmetrical configuration. Moreover, one can choose the widths of the strips and the slit between
them to be big comparatively to the wavelength. In this case the elements of K̂ can be found approximately
using the diffraction series method.

2. Using the equation (6.9) and taking the matrix K̂ found on the previous step as the initial values for it,
find numerically the coefficients of the matrix K̂ for any given configuration a1 . . . a4.

3. Solve the equation (5.1). The boundary data for this equation is composed of the analyticity restrictions,
growth restrictions and the asymptotics (4.3). The result is the set of the functions Um

n .

4. Using the embedding formula (4.14) construct the far-field diagram.
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