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Abstract

A new method is proposed for solving diffraction problems having piece-
wise linear ideal boundaries. According to this method, the initial Helmholtz
equation is replaced by a system of matrix equations of order 1. The coef-
ficients of these equations are rational matrix functions of the coordinates.
The properties of the coordinate matrix system are close to that of the or-
dinary differential equation, therefore the new method can be treated as a
generalization of the separation of variables.

1 Introduction

Separation of variables (SV) is the most powerful technique for finding exact solu-
tions of the problems related to partial differential equations. However, this method
has some weak points. Two of them are the following. First, this method is ap-
plicable to a very restricted set of geometries. All these geometries, say for the
Helmholtz equation, are classified by group theory analysis; the detailed discussion
of this matter can be found, for example, in [1]. Second, even a simple diffraction
problem leads to a complicated Fourier series in special functions. As a rule, the
structure of the field cannot be easily found from the series. A special technique,
such as Watson’s transform, is required to study the exact solution obtained using
SV. Sadly, such a transform is not known for many interesting cases.

In the present paper we propose a technique that can help to overcome the dis-
advantages mentioned above, i.e. it is applicable to a wider class of problems and
the solution is not represented as a Fourier series. The main idea of the method is
to reduce the diffraction problem, which involves the Helmholtz equation, bound-
ary, edge and radiation conditions, to an ordinary differential equation (ODE) of a
rather simple form. The coefficients of the equation are rational functions of the
coordinates.
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Here we describe the main idea of the SV generalization. Consider the simplest
case of SV: the wave field in a rectangular area. Consider the Helmholtz equation

∆u + k2
0u = 0 (1.1)

in a rectangle 0 < x < L, 0 < y < M with Dirichlet conditions at the boundaries,
u = 0. The solution is the product

u = sin kx sin γy, k =
πm

L
, γ =

√
k2

0 − k2 =
πn

M
, m, n ∈ Z. (1.2)

Construct the vector U = (u1, u2, u3, u4)T of dimension 4 with the following compo-
nents:

u1 = u, u2 =
∂u

∂x
, u3 =

∂u

∂y
, u4 =

∂2u

∂x∂y
.

Note that all components of the vector are solutions of the Helmholtz equation in
the rectangle, but the boundary conditions for these solutions should be chosen
differently.

One can check, that the vector U obeys the differential equations

∂U

∂x
= XU,

∂U

∂y
= YU, (1.3)

with the matrix coefficients

X =




0 1 0 0
−k2 0 0 0
0 0 0 1
0 0 −k2 0


 , Y =




0 0 1 0
0 0 0 1
−γ2 0 0 0
0 −γ2 0 0


 . (1.4)

The situation is similar for each classical SV. Let η and ξ be the coordinates,
in which the variables are separated. Then an eigenfunction can be written as a
product u = T (η)S(ξ), and the functions T and S obey differential equations of
order 2:

T ′′(η)− f1(η)T ′(η)− g1(η)T (η) = 0,

S ′′(ξ)− f2(ξ)S
′(ξ)− g2(ξ)S(ξ) = 0,

One can see that the following equations are valid (we denote the derivatives by the
indices here):

∂

∂η




u
u,η

u,ξ

u,ηξ


 =




0 1 0 0
g1(η) f1(η) 0 0

0 0 0 1
0 0 g1(η) f1(η)







u
u,η

u,ξ

u,ηξ


 , (1.5)
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∂

∂ξ




u
u,η

u,ξ

u,ηξ


 =




0 0 1 0
0 0 0 1

g2(ξ) 0 f2(ξ) 0
0 g2(ξ) 0 f2(ξ)







u
u,η

u,ξ

u,ηξ


 . (1.6)

The equations (1.3) will now be called the coordinate equations. These equations
formally are in partial derivatives, but their properties are similar to that of an
ordinary differential equation. Namely, the solution of a partial differential equation
can be found when its values are known on a contour in the (x, y)-plane. Conversely,
the solution of the system (1.3) is specified by the value of the vector U at just one
arbitrary point P . Any other point P ′ can be connected with P by a line, and
an ordinary differential equation describing the behaviour of U on this line can be
constructed as a restriction of (1.3) on this line. The value U(P ) should be used as
the initial conditions for this equation.

One can see that the coefficients of the equations (1.5) and (1.6) have a very
strict structure. Some coefficients should be equal to zero, and the other ones should
depend on a single variable. The idea of generalization these equations is by allowing
the unknown vector U and the coefficient matrices to have a more flexible structure.
We demand only that the first component of the vector is the solution of the given
diffraction problem, all other components can be chosen arbitrarily. The vector can
have an arbitrary dimension, and the elements of the coefficient matrices can be
arbitrary functions of the coordinates. Obviously, the structure of the coefficents
should be much simpler than the structure of the solutions, otherwise the equations
are senseless.

Surprisingly, equations of the form (1.3) with relatively simple coefficients can
be written for a wide class of diffraction problems.

Of course, some price is paid for this generalization of the SV method. While the
order of the ODEs in the classical SV applied to the Helmholtz equation is normally
equal to 2, the order of the ODEs emerging in our method is usually higher than 2.
The more complicated scatterer leads to equation of higher order. The result is a
situation, in which the analytical solution of the ODE is not known. However, the
equations obtained here belong to a well-studied class: they are confluent Fuchsian.
A powerful theory has been developed for these equations, so the situation is not
completely hopeless.

Our paper has a strong relation to the works [2], [3], [4] devoted to the strip
problem. The ODEs obtained in these works for the field on the scatterer or for
the far-field diagram can be found as particular cases of the coordinate equations
obtained here. The procedure proposed below is close to that of [3]. We should
mention here also the work [5], where the structure of the eigenfunction series for
the several strips problem was constructed. However, the relation of these series to
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our method still remains questionable.
The paper is organized as follows. In Section 2 the coordinate equations are

derived for the problem of diffraction of a plane wave by two Dirichlet or Neumann
strips. The coefficients and the initial conditions are known up to several numerical
constants, which should be found either by solving the eigenvalue problem or using
some other technique. In Section 3 some special issues related to the coordinate
equations are discussed. The solvability of the equations and obeying the Helmholtz
equation and the boundary conditions by the solutions are these issues. The equa-
tions for the directivities are also derived in this section. In Section 4 we represent
the analytical solution of the coordinate equations for the case of diffraction by a
half-plane and the numerical solution of the coordinate equation for the case of two
strips.

2 Problem formulation

Let the Helmholtz equation (1.1) be fulfilled in the (x, y)-plane. The time depen-
dence is assumed to have the form e−iωt and is omitted everywhere. The incident
plane wave

uin = e−ik∗x−i
√

k2
0−k2∗y, k∗ = k0 cos ψ

(ψ is the angle of incidence) illuminates the scatterer which is a set of two strips
(see Fig. 1) with Dirichlet boundary conditions ud = 0.

Figure 1: Geometry of the problem

The problem is effectively two-dimensional. The (x, y)-cross-section of the strips
is the set of the segments (a1, a2), (a3, a4) of the x-axis. All the techniques presented
below can be obviously generalized to the case of an arbitrary number of the strips
located in one plane and bearing the Dirichlet boundary conditions, The case of 2
strips is chosen just because it is the simplest case, for which the classical SV is not
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known. Note that our method gives nontrivial results even for the cases of one strip
and a half-plane, for which the classical SV is applicable.

The total field ud can be split into the incident and the scattered field:

ud = uin + ud
sc.

The scattered field is symmetrical. The boundary conditions for ud
sc are as follows.

ud
sc(x,±0) = −e−ik∗x for x ∈ (a1, a2) ∪ (a3, a4), (2.1)

∂yu
d
sc(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (2.2)

We assume that the radiation condition is fulfilled for the scattered field. More-
over, Meixner’s conditions are fulfilled in the vicinity of the edges of the scatterer,
i.e. near the points (am, 0). In our case Meixner’s conditions conditions demand that
the field has the asymptotics

u ∼ A + B(r1/2) + O(r)

near the edges.
We formulate the problem of the diffraction by a set of Neumann strips as well.

Let the geometry of the strips be the same as for the Dirichlet problem. Let the
Neumann boundary conditions be fulfilled by the field un on the strips:

∂yu
n = 0 for y = ±0, x ∈ (a1, a2) ∪ (a3, a4).

The total field, again, can be represented as the sum

un = uin + un
sc,

un
sc is the scattered field, which is antisymmetric and satisfies the following boundary

conditions:

∂yu
n
sc(x,±0) = i

√
k2

0 − k2∗e
−ik∗x for x ∈ (a1, a2) ∪ (a3, a4), (2.3)

un
sc(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (2.4)

The radiation and the edge conditions are fulfilled by un
sc.
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3 Auxiliary solutions for the strip and the slit

problem

The derivation of the coordinate equations for ud,n
sc is performed in two steps. Firstly,

the auxiliary (oversingular) functions are introduced and the coordinate equations
for them are derived. Secondly, the coordinate equations for the ud,n

sc are derived
using the equations for the auxiliary functions.

Introduce the local cylindrical coordinates (ρm, θm) near the edges of the scatterer
(see Fig. 2).

Figure 2: Local cylindrical coordinates

Consider the diffraction problem with the same Dirichlet strips as described
above, but with the excitation by a line source rather than by a plane wave. Let
the source be located near one of the edges (am, 0). Namely, let vm, m = 1 . . . 4 be
the limit of the solution of the inhomogeneous Helmholtz equation

∆vm + k2
0v

m = π1/2ε−3/2δ(ρm − ε)δ(θm − π), (3.1)

Here δ is the Dirac’s delta-function; ε → 0. The strength of the source is equal to
ε−1/2 Note that the dependence of strength of the source on ε is chosen such that
there exists the non-zero limit of the solution. The boundary condition for vm have
the form

vm(x,±0) = 0 for x ∈ (a1, a2) ∪ (a3, a4), (3.2)

Obviously, the function vm is symmetrical, hence the following boundary condition
is valid:

∂yv
m(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (3.3)

Also, the radiation condition is fulfilled by vm.
Meixner’s conditions are assumed to be satisfied for each non-zero ε, but the be-

haviour of the limiting function vm near the edge (am, 0) appears to violate Meixner’s
condition just because the presence of the source near this edge. This behaviour can
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be studied by the standard technique. Taking the limit, we obtain that the function
behaves like vm ∼ ρ

−1/2
m . Therefore, instead of taking the limit of the line-source

problem, one can find vm as the solution having the oversingular behaviour near the
edge am.

In more details, the asymptotics of the solutions vm near the edges (an, 0) have
the form

vm(ρn, θn) = −δm,n√
π

ρ−1/2
n sin

θn

2
+

2Cm
n√
π

ρ1/2
n sin

θn

2
+ O(ρ3/2

n ), (3.4)

where Cm
n are some unknown coefficients; δm,n is the Kronecker’s delta.

We also introduce the auxiliary oversingular functions wm, m = 1, . . . 4 for the
Newmann strips problem.

The boundary conditions have the form

∂yw
m(x,±0) = 0 for x ∈ (a1, a2) ∪ (a3, a4), (3.5)

wm(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (3.6)

The radiation condition is fulfilled. The Meixner’s conditions are satisfied for each
non-zero ε. The functions wm are characterised by the oversingular terms in their
asymptotics:

wm(ρn, θn) = −δm,n√
π

ρ−1/2
n cos

θn

2
+

2Em
n√
π

ρ1/2
n cos

θn

2
+ O(ρ3/2

n ), (3.7)

Em
n are some constants.

The constants Cm
n and Em

n play an important role in the subsequent derivation
of the coordinate equations. Namely, they are the numerical parameters of the
coefficients X and Y. At this stage these parameters are unknown, but we assume
that they can be calculated by some technique.

4 An important note

We suppose that k0 belongs neither to the spectrum of the Dirichlet nor of the
Neumann strips problem. It means that the functions ud,n

sc are defined uniqiely and
the following statement is true. If some function u(x, y) obeys the homogeneous
Helmholtz equation, radiation condition at infinity, homogeneous boundary condi-
tions (2.4), (2.3) or (3.5), (3.6) on the x-axis and Meixner’s conditions at the edges,
then u ≡ 0. This feature is very important for derivation of the coordinate equations.
If k0 belongs to the spectrum, the method should be modified.

Note that the auxiliary solutions vm and wm are allowed to be non-zero only
because they violate Meixner’s condition at one of the edges.
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5 Derivation of the coordinate equations for the

auxiliary functions

Construct the vector of the unknowns

U = (v1, v2, v3, v4, w1, w2, w3, w4)T . (5.1)

Our purpose here is to construct the equations of the form (1.3) for this vector. We
find it convenient also to introduce the vectors of dimension 4:

V = (v1, v2, v3, v4)T , W = (w1, w2, w3, w4)T .

Construct the derivative

v∗ ≡ ∂vm

∂θm

=

[
(x− am)

∂

∂y
− y

∂

∂x

]
vm,

where θm is treated as a global cylindrical coordinate. Obviously, v∗ obeys the homo-
geneous Helmholtz equation (1.1) and the radiation condition. Moreover, detailed
study shows that v∗ satisfies the boundary conditions (3.5) and (3.6) (note that vm is
antisymmetrical and smooth enough on the strips, and that ∂2

yv
m = −(∂2

x + k2
0)v

m).
Meixner’s conditions are violated by v∗. Using the asymptotics (3.4) one can

obtain asymptotic estimations for v∗ near the edge an:

vm =

(
(−1)mδm,n

2
+ (an − am)Cm

n

)
1√
π

ρ−1/2
n cos

θn

2
+ O(ρ1/2

n ). (5.2)

Using these asymptotics, one can construct the combination

v∗∗ = v∗ +
(−1)m

2
wm +

4∑
n=1

(an − am)Cm
n wn,

which satisfies the Meixners’s conditions. Besides, v∗∗ satisfies the Helmholtz equa-
tion, radiation condition and the boundary conditions (3.5), (3.6). Due to Subsec-
tion 4, v∗∗ ≡ 0. Therefore,

[
(x− am)

∂

∂y
− y

∂

∂x

]
vm = RmW ≡

4∑
n=1

Rm
n wn, m = 1 . . . 4, (5.3)

where Rm is the string with the elements

Rm
n =

(−1)m−1δm,n

2
− (an − am)Cm

n , n = 1 . . . 4. (5.4)

8



Thus, one equation expressing the spatial derivatives of vm through the compo-
nents of the vector U is constructed. We need more such equations to obtain the
separate expressions for the derivatives. For this we should find several combina-
tions containing the derivatives of vm and wm with respect to x and y and having
the singularities at (an, 0) not stronger than ρ

−1/2
n . One can check directly that the

combinations
[
(x− am)

∂

∂y
− y

∂

∂x

]
wm,

∂vm

∂y
+ (−1)m ∂wm

∂x
,

∂wm

∂y
− (−1)m ∂vm

∂x

satisfy this condition. Using the technique described above, i.e. studying the asymp-
totics of these combinations, subtracting the appropriate sums of vn or wn and taking
into account the uniqueness of the solution, we obtain the following representations:

[
(x− am)

∂

∂y
− y

∂

∂x

]
wm = QmV ≡

4∑
n=1

Qm
n vn, m = 1 . . . 4, (5.5)

∂vm

∂y
+ (−1)m ∂wm

∂x
= SmW ≡

4∑
n=1

Sm
n wn, m = 1 . . . 4, (5.6)

∂wm

∂y
− (−1)m ∂vm

∂x
= TmV ≡

4∑
n=1

Tm
n vn, m = 1 . . . 4, (5.7)

where Qm, Sm and Tm are the raws of dimension 4:

Qm
n =

(−1)mδm,n

2
− (an − am)Em

n , (5.8)

Sm
n = −Cm

n − (−1)m+nEm
n , (5.9)

Tm
n = −Em

n − (−1)m+nCm
n (5.10)

for n = 1 . . . 4.
The equations (5.3), (5.5), (5.6), (5.7) can be solved with repect to the x- and

y-derivatives of vm and wm for each m. The result can be written in the form of the
coordinate equations

∂U

∂x
= XU,

∂U

∂y
= YU, (5.11)

where X and Y are the block matrices

X =

(
X1

1 X1
2

X2
1 X2

2

)
, Y =

(
Y1

1 Y1
2

Y2
1 Y2

2

)
, (5.12)
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The elements of the matrices Xi
j and Yi

j are given by the following formulae:

(X1
1 )m

n =
(−1)m−1(x− am)(Qm

n − (x− am)Tm
n )

(x− am)2 + y2
, (X1

2 )m
n = −y(Rm

n − (x− am)Sm
n )

(x− am)2 + y2
,

(X2
1 )m

n = −y(Qm
n − (x− am)Tm

n )

(x− am)2 + y2
, (X2

2 )m
n =

(−1)m(x− am)(Rm
n − (x− am)Sm

n )

(x− am)2 + y2
,

(Y 1
1 )m

n =
(−1)m−1y(Qm

n − (x− am)Tm
n )

(x− am)2 + y2
, (Y 1

2 )m
n =

(x− am)Rm
n + y2Sm

n

(x− am)2 + y2
,

(Y 2
1 )m

n =
(x− am)Qm

n + y2Tm
n

(x− am)2 + y2
, (Y 2

2 )m
n =

(−1)my(Rm
n − (x− am)Sm

n )

(x− am)2 + y2
.

Thus, the coordinate equations for the auxiliary solutions are derived. Note the
following features of the these equations.
- The coefficients of the matrices are rational functions of x and y. The denominators
have the form (x− am)2 + y2.
- The coefficients contain several unknown constants Cm

n , Em
n , not depending on x

and y. These constants should be found using a special eigenvalue problem or some
other technique.
- The auxiliary functions can be found from the system (5.11) without any Fourier
series.
- The classical separation of variables cannot be performed for two strips.

6 Derivation of the coordinate equations for the

plane wave incidence

Let the functions ud and un have the following asymptotics near the edges an:

ud = An +
2Cn√

π
ρ1/2 sin

θn

2
+ O(ρn), (6.1)

un = Bn +
2En√

π
ρ1/2 cos

θn

2
+ O(ρn), (6.2)

where An, Bn, Cn, En are some constants.
Consider the following combination:

(ud
sc)

∗ =
∂ud

sc

∂x
+ ik∗ud

sc

This combination obeys the Helmholtz equation, and it satisfies homogeneous bound-
ary conditions (3.2), (3.3). The function (ud

sc)
∗ satisfies the radiation condition, but
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it does not satisfy the Meixner’s edge conditions. However, this can be fixed by
calculating the asymptotics of (ud

sc)
∗ at the edges and subtracting an appropriate

combination of the functions vn. After performing this procedure and applying the
statement of Subsection 4, one can prove that

∂ud
sc

∂x
= −ik∗ud

sc −
4∑

n=1

(−1)nCnv
n. (6.3)

Analogously, one can obtain three other equations:

∂un
sc

∂x
= −ik∗un

sc +
4∑

n=1

(−1)nEnwn, (6.4)

∂ud
sc

∂y
= −i

√
k2

0 − k2∗u
n
sc −

4∑
n=1

Cnw
n, (6.5)

∂un
sc

∂y
= −i

√
k2

0 − k2∗u
d
sc −

4∑
n=1

Env
n. (6.6)

These equations together with (5.3), (5.5), (5.3), (5.5) can be rewritten in the
matrix form. Namely, introduce the vector

Ũ = (ud
sc, u

n
sc, v

1, v2, v3, v4, w1, w2, w3, w4)T .

The coordinate equations for this vector have the form

∂Ũ

∂x
= X̃Ũ,

∂Ũ

∂y
= ỸŨ, (6.7)

where X̃ and Ỹ are the block matrices:

X̃ =

(
H1 G1

0 X

)
, X̃ =

(
H2 G2

0 Y

)
, (6.8)

H1 =

( −ik∗ 0
0 −ik∗

)
, H2 =

(
0 −i

√
k2

0 − k2∗
−i

√
k2

0 − k2∗ 0

)
,

G1 =

(
C1 −C2 C3 −C4 0 0 0 0
0 0 0 0 −E1 E2 −E3 E4

)
,

G2 = −
(

0 0 0 0 C1 C2 C3 C4

E1 E2 E3 E4 0 0 0 0

)
.
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The matrices X and Y are given by (5.12). Thus, the coordinate equation involving
the scattered field usc is constructed. This equation has dimension 10.

Note that the scattered field is the solution of a single coordinate equation, and
it is not represented by a Fourier series.

Note also that the vector Ũ can be redefined as follows:

Ũ = (ud, un, v1, v2, v3, v4, w1, w2, w3, w4)T ,

i.e. the total fields can be considered instead of the scattered ones. The new vector
obeys the equations (6.7) with the same coefficients.
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