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Abstract

New analytical results are presented for the problem of a plane acoustic wave scat-
tering by a flat cone (a quarter plane) with Dirichlet boundary conditions. The results
are obtained within a general framework developed by author for the strip/slit diffraction
problem. These results include (i) embedding formulae representing the diffraction co-
efficient in the factorized form through the edge Green’s functions depending separately
on the direction of incidence and scattering, and (ii) the coordinate equations for the
auxiliary functions that reduce the partial differential problem to a boundary problem
for a system of ordinary differential equations. The new approach can be treated as a
generalization of the separation of variables technique.

1 Introduction

Scattering by a cone with a polygonal cross-section is one of the main canonical diffraction
problems, i.e. it can be used as a building block for the Geometrical Theory of Diffraction
(GTD) or some other composite theory. That is why conical problems retain a considerable
interest of researchers. The most interesting cases for applications are the flat cone and the
trihedral cone. The first one models, say, the edge of an aircraft wing and the last one can be
a model of a corner of a building.

Recently, a general approach to conical problems has been developed by the group of
Smyshlyaev [1, 2]. This approach is as follows. On the first step the problem is formulated
in the polar coordinates, and the radial variable is separated from the spherical ones. As the
result, one obtains the formula for the diffraction coefficient of the flat cone problem:

f(ω, ω0) =
i

π

∫

γ

e−iπνg(ω, ω0, ν)ν dν (1)

(see [1]). Here ω and ω0 are the direction of incidence and scattering, ν is the separation
constant, g is the Green’s function of the corresponding problem on a unit sphere.

On the second step the spherical Green’s function g should be found. Generally it can be
computed by solving the boundary integral equations for the spherical problem. Alternatively
the function g can be expressed trough the eigenfunctions Φj and eigenvalues νj of the spherical
problem as follows:

g(ω, ω0, ν) =
∑

j

Φj(ω)Φj(ω0)

ν2 − ν2
j

. (2)
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However, in some particular cases (we should note that the flat cone belongs to this set) the
eigenfunctions can be found analytically by separating variables in the sphero-conal coordinates
(see, e.g. Kraus and Levine [3] for the flat cone). This approach takes into account that the
flat cone is a degenerate case of an elliptic cone.

In the current paper we are going to modify this procedure as follows. First, we shall
modify the representation (1). Instead of using the Green’s function g(ω, ω0, ν) we shall obtain
the integral representation involving the spherical edge Green’s functions v1,2(ω, ν). Such a
function can be treated as a limiting case of the Green’s function g as the source location
approaches the edge of the scatterer. This function depends on less variables (on 3 rather than
on 5), therefore it is more convenient for numerical tabulation. The new representation will be
called the embedding formula. Second, we prefer to avoid using the representation (2), since
it leads to an ineffective numerical procedure. Also it should be mentioned that separation
of variables can be performed for no other polygonal cone except the flat one. Solving the
boundary integral equations for g could be an alternative, but it leads to lack of elegance and
analytical understanding. Instead, we propose a novel technique of the coordinate equations ,
which can be treated as a generalization of separation of variables. This technique enables us
to find the edge Green’s functions v1,2 without series. The new method can be applied to a
wide class of problems, e.g. to a trihedral cone problem.

2 Basic relations

2.1 Problem formulation

Let the Helmholtz equation
∆u + k2

0u = 0. (3)

be valid in the 3D space (x, y, z). The time dependence of all variables has the form e−iΩt and
it is omitted henceforth.

Figure 1: Geometry of the problem

The screen occupies the quarter-plane z = 0, x > 0, y > 0. The lines (x > 0, y = 0, z = 0)
and (x = 0, y > 0, z = 0 will be named the edges of the scatterer and denoted by the symbols
Λ1 and Λ2 (see Figure 1).
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The Dirichlet boundary conditions fulfilled on the both sides of the cone.
Let the incident field has the form of a plane wave

uin = e−i(kxx+kyy+kzz), (4)

where k2
x + k2

y + k2
z = k2

0.
Besides the governing equation and boundary conditions, the radiation, edge and vertex

conditions should be imposed to make a proper problem formulation. The radiation condition
is not easy to formulate in this case, but its physical meaning is clear: there should not be
components of the field coming from infinity except uin and the wave components reflected
from the sides and scattered by the edges.

The edge condition follows from the theory of diffraction by an ideal half-plane. The edge
is source-free if the field near the edge behaves like

u ∼ ρ
1/2
1,2 sin

α1,2

2
, (5)

where ρj and αj are the local cylindrical coordinates near the edge Λj.
The vertex conditions can be formulated in the form

u = O(1), ∇u = o(r−1/2) as r → 0, (6)

where r is the distance from the vertex of the cone.
We shall assume below that the theorem of uniqueness is valid for the problem of diffraction

by a cone, i.e. if a field satisfies the Helmhotz equation, Dirichlet boundary conditions, radiation,
edge and vertex conditions, then it is identically equal to zero.

2.2 Diffraction coefficient

Below we consider only the spherical component of the field. This component has the form

usc(ω, r) = 2π
eik0r

k0r
f(ω) + O(eik0r(k0r)

−2). (7)

Here r is the distance from the vertex, and ω is the point on the unit sphere marking the
direction of scattering, and f(ω) is the diffraction coefficient. We prefer to indicate explicitly
the dependence of the diffraction coefficient on the direction ω0 from which the incident plane
wave is coming:

f = f(ω; ω0).

Introduce the spherical coordinates for the points ω and ω0: ω(θ, ϕ), ω0(θ0, ϕ0) The positive
z-axis corresponds to the direction of θ = 0, and the positive x-axis corresponds to θ = π/2,
ϕ = 0.

Besides, we shall use the “Cartesian” coordinates (ξ, η) and (ξ0, η0) for ω and ω0, respec-
tively:

ξ = sin θ cos ϕ, η = sin θ sin ϕ.

The diffraction coefficient f(ω; ω0) is the main function to be determined within the current
research.
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3 Embedding formula for the diffraction coefficients

3.1 Edge Green’s functions in the 3D space

Introduce the edge Green’s function Gy having the prescribed oversingular (unphysical) asymp-
totics at the edge as follows. Consider the inhomogeneous Helmholtz equation

(
∆ + k2

0

)
Ĝy(x, y, z; Y, ε) =

√
π

ε
δ(x + ε, y − Y, z).

Solve this problem taking into account boundary, radiation, vertex, and edge conditions and
take the limit

Gy(x, y, z; Y ) = lim
ε→0

Ĝy(x, y, z; Y, ε).

Gy(x, y, z; Y ) is one of the edge Green’s functions for our problem.
Since the edge condition physically means the absence of the sources at the edge, and the

function Gy does possess the source at the edge, it should violate the edge condition. A detailed
local study of the edge behaviour of Gy shows that the following property is valid. If the integral

I(x, y, z) =

∞∫

0

h(Y )Gy(x, y, z; Y )dY

is constructed for a smooth enough density function h, then the edge asymptotics for I near
the edge Λ2 has the form

I(ρ2, α2, y) = −h(y)√
π

ρ
−1/2
2 sin

α2

2
+ O(ρ

1/2
2 sin

α2

2
)

in the local cylindrical coordinates.
Analogously, introduce another edge Green’s function Gx(x, y, z; X) for the point source

located near the edge Λ1. By symmetry,

Gx(x, y, z; X) = Gy(y, x, z; X).

Introduce the directivities fy and fx of the edge Green’s functions as the coefficients of the
following asymptotic expansions:

Gy(ω, r; Y ) = 2π
eik0r

k0r
fy(ω; Y ) + O(eik0r(k0r)

−2), (8)

Gx(ω, r; X) = 2π
eik0r

k0r
fx(ω; X) + O(eik0r(k0r)

−2). (9)

Obviously,
fx(ξ, η; X) = fy(η, ξ; X). (10)

Finally, define CG(x; Y ) as the coefficient of the edge asymptotics of the edge Green’s
function Gy (i.e. with the source at Λ2) observed near the edge Λ1:

Gy(ρ1, α1, x; Y ) =
2CG(x; Y )√

π
ρ

1/2
1 sin

α1

2
+ O(ρ

3/2
1 ).
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Note that a similar coefficient can be defined by taking the source at the edge Λ1 (i.e. by
studying the edge Green’s function Gx) and the observation point at the edge Λ2. However,
due to the reciprocity principle the source and the observation point can be interchanged, so it
will be the same coefficient. Moreover, due to symmetry

CG(x; y) = CG(y; x).

3.2 Embedding formulae in the 3D domain

Let us prove the following theorem.

Theorem 1 The following integral representations (the so-called embedding formulae in 3D
space) are valid for the diffraction coefficient f(ω, ω0):

f(ω, ω0) =
4π2i

k2
0(ξ + ξ0)

∞∫

0

fy(ω; Y ) fy(ω0; Y ) dY, (11)

f(ω, ω0) =
4π2i

k2
0(η + η0)

∞∫

0

fx(ω; X) fx(ω0; X) dX, (12)

f(ω, ω0) =
4π2

k3
0(ξ + ξ0)(η + η0)

×
∫∫ ∞

0

[fx(ω; X) fy(ω0; Y ) + fx(ω0; X) fy(ω; Y )] CG(X; Y ) dX dY. (13)

The formulae (11), (12), (13) can be proved using the technique developed in [4], i.e. by
applying the operators

Hx =
∂

∂x
+ ik0ξ0, Hy =

∂

∂y
+ ik0η0

and

Hxy =

(
∂

∂x
+ ik0ξ0

)(
∂

∂y
+ ik0η0

)

to the total field and taking into account the theorem of uniqueness.

3.3 Edge Green’s functions on a sphere

Let us make some preliminary steps for the subsequent consideration. The embedding formulae
(11), (12) and (13) will be used below to modify the representation (1). A natural way for this
is to separate the radial variable and to study the spherical problem for each value of the
separation constant. That is why we need an analog of the edge Green’s function introduced
for the problem on a sphere.

Define the Laplace-Beltrami operator in the spherical coordinates:

∆̃ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
.
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One can formulate an eigenvalue Dirichlet problem on a sphere as follows. Let the Laplace-
Beltrami equation (

∆̃ + ν2 − 1

4

)
v(ω, ν) = 0 (14)

be valid on a sphere with the cut S corresponding to the cross-section of the flat cone (i.e. S is
the line θ = π/2, 0 < ϕ < π/2). Let the Dirichlet boundary condition v = 0 be valid on S

The edge conditions are formulated for the edges L1 and L2 of the spherical problem, i.e.
for the ends of S, which are the cross-sections of Λ1 and Λ2, respectively. Introduce the local
spherical coordinates ζ1,2, φ1,2 near the edges as it is shown in Fig. 2. One should demand that

the solution near the edges grows no faster than ζ
1/2
1,2 sin(φ1,2/2).

Figure 2: Local spherical coordinates near the edges

The functions satisfying all these conditions exist for a discrete set of real values of ν
(eigenvalues of the problem). These values form the spectrum of the problem and will be
denoted by νj. Corresponding eigenfunctions will be denoted by Φj(ω). One can show that all
νj > 1/2.

We assume that the eigenfunctions are normalized as follows:
∫∫

Φm(ω)Φn(ω) dω =

{
0, m 6= n,
1, m = n.

Here the integration is performed over the whole sphere.
Define the spherical edge Green’s function v1(ω, ν) for values of ν not belonging to the

spectrum as follows. First, define the function v̂1(ω, ν; κ) as the solution of the spherical
problem with a point source located at the point ωκ = (θ = π/2, ϕ = −κ) close to the edge
ϕ = 0. We assume that the inhomogeneous Laplace-Beltrami equation is valid:

(
∆̃ + ν2 − 1

4

)
v̂1(ω, ν, κ) =

√
π

κ
δ(θ − π/2, ϕ + κ).

The boundary condition at the cut and the edge conditions are also taken into account. Solve
this problem for each κ and take the limit

v1(ω, ν) = lim
κ→0

v̂1(ω, ν, κ).
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Function v1 can be represented trough the eigenfunctions of the spherical problem. Namely,
let the edge asymptotics of the eigenfunction Φj near L1 and L2, respectively, have the form:

Φj(ζ1, φ1) =
2Cj√

π
ζ

1/2
1 sin

φ1

2
+ O(ζ

3/2
1 ), (15)

Φj(ζ2, φ2) =
2C̃j√

π
ζ

1/2
2 sin

φ2

2
+ O(ζ

3/2
2 ). (16)

Here Cj and C̃j are some constants.
Using orthogonality and completeness of the eigenfunctions, one can obtain the relation

v1(ω, ν) = 2
∑

j

CjΦj(ω)

ν2 − ν2
j

. (17)

Analogously, taking the source at the point ω̃κ with the coordinates θ = π/2, ϕ = π/2 + κ,
one can introduce the edge Green’s function v2(ω, ν). Due to symmetry, v2(θ, ϕ, ν) = v1(θ, π/2−
ϕ, ν). Using the asymptotics (16) this function can be written in the form

v2(ω, ν) = 2
∑

j

C̃jΦj(ω)

ν2 − ν2
j

. (18)

Introduce also the coefficient C1
2(ν) describing the asymptotics of v1 near the edge L2:

C1
2(ν) = 2

∑
j

CjC̃j

ν2 − ν2
j

= lim
κ→0

√
π

2
√

κ
v1(θ = π/2, ϕ = π/2 + κ) = 2

∑
j

CjC̃j

ν2 − ν2
j

.

3.4 Embedding formulae in the spectral domain

Let us formulate the following theorem.

Theorem 2 The following embedding formulae in the spectral domain are valid:

f(ω, ω0) =
1

4πi(η + η0)

∫

γ

e−iπν [v1(ω0, ν)v1(ω, ν + 1) + v1(ω, ν)v1(ω0, ν + 1)] dν, (19)

f(ω, ω0) =
1

4πi(ξ + ξ0)

∫

γ

e−iπν [v2(ω0, ν)v2(ω, ν + 1) + v2(ω, ν)v2(ω0, ν + 1)] dν, (20)

f(ω, ω0) =
i

8π(ξ + ξ0)(η + η0)

∫

Γ

e−iπν

ν
C1

2(ν)[B(ω, ω0, ν) + B(ω0, ω, ν)] dν, (21)

where
B(ω, ω0, ν) = (v1(ω, ν + 1)− v1(ω, ν − 1))(v2(ω0, ν + 1)− v2(ω0, ν − 1)),

γ and Γ are the contours of integration shown in the Figure 3 and Figure 4. Contour Γ consists
of the infinite loop and two small loops.

7



Figure 3: Contour of integration for formula (19)

Figure 4: Contour of integration for formula (21)

The procedure of the proof is similar to the one described in [2], [1].
Compare the properties of the embedding formulae with that of (1). There are two features

making the embedding formulae preferable.
(i) The functions v1,2(ω, ν) depend on three scalar variables, while g(ω, ω0, ν) depend on five
ones. Therefore functions v1,2 require less computational efforts, if such tabulation if necessary.
(ii) The integrals (19), (20) and (21) are better than (1) from the point of view of convergence.

The last statement should be explained. The integral (1) is convergent only in the sense of
distributions. However, the authors of [1] discuss the possibility of transforming the contour of
integration in (1) in such a way that the integrand decays exponentially along the contour. We
should remind here that the exponentially decaying integrals are much more attractive for the
numerical analysis than the divergent ones.

In application to our case, the main result of [1] is that such a transformation is available
only for the points ω and ω0 satisfying the inequalities

arccos ξ + arccos ξ0 > π (22)

and
arccos η + arccos η0 > π. (23)

Let us study the growth of the integrands of (19), (20) and (21). Following [1] and [5], we
obtain the following estimations:

v1(ω, ν) ∼ exp{−|Im ν| arccos ξ}|ν|−1/2,

v2(ω, ν) ∼ exp{−|Im ν| arccos η}|ν|−1/2,

C1
2(ν) ∼ exp{−|Im ν|π/2}

The integrand of (19) can be estimated as

|ν|−1 exp{−iπν − |Im ν|(arccos ξ + arccos ξ0)}.
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It means that the integral (19) is convergent for all ω, ω0, and if the inequality (22) is valid,
then this integral can be converted into the exponentially convergent one by using the contour
γ′ instead of γ as it is shown in Figure 5a. Note that the inequality (23) is not necessary in
this case.

Similarly, the formula (20) can be considered.

Figure 5: Deformation of the contours of integration

The integrand of (21) can be estimated as

|ν|−2 exp{−iπν} (exp{−|Im ν|(arccos ξ + arccos η0 + π/2)}+
exp{−|Im ν|(arccos ξ0 + arccos η + π/2)}) .

The integral is convergent for almost each ω and ω0 (when the exponential factor oscillates). If

arccos ξ + arccos η0 > π/2 (24)

and
arccos ξ0 + arccos η > π/2 (25)

the open loop of the contour of integration Γ can be deformed into the contour Γ′ shown in
Fig. 5b, along which the convergence is exponential.

Consider the inequalities (22), (23), (24) and (25). When they stop to be valid it is reason-
able to expect the singularities of the diffraction coefficient. All singularities of the diffraction
coefficient can be found by simple physical consideration. The cylindrical wave diffracted by
the edges of the quarter plane are due to the simple poles of f . These poles are located at the
lines ξ + ξ0 = 0 and η + η0 = 0. The intersection of these lines correspond to the reflected
plane wave. Beside these sets there can be “secondary” singularities corresponding to the rays
diffracted first by one edge and then by another one (see Fig. 6). These rays result into the
branch lines corresponding to the sets η =

√
1− ξ2

0 and ξ =
√

1− η2
0. The first singularity

appears only if ξ0 > 0, and the second one appears only if η0 > 0.
According to this consideration, one can see that the embedding formulae enable one to

“extract” the singularities (poles) out of the integral into the rational factor. The formulae
(19) and (20) extract only one pole each, and the formula (21) extracts both poles. Only the
secondary singularities remain in the integral term.

Physically, this can be explained as follows. The operator Hxy gives zero when it acts on
the incident plane wave, reflected plane wave, and both scattered cylindrical waves.
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Figure 6: Rays corresponding to the secondary singularities

4 Coordinate equations for the edge Green’s functions

on the sphere

As one can see, by means of the embedding formulae the diffraction coefficient becomes ex-
pressed in terms of the functions v1,2 and the function C1

2 associated with their asymptotics.
These functions can be calculated using the series (17),(18) with the eigenfunctions Φj found
by the classical separation of variables. However, below we propose a completely new method
to calculate v1,2. This method can be applied to a wider range of the diffraction problems, in
particular to those, for which the classical separation of variables is not known. For example,
the same method, almost unmodified, can be applied to a sphere with several Dirichlet cuts
located on the line θ = π/2 or to a sphere with a triangular hole corresponding to a trihedral
cone having right angles at the vertex. Both of these problems cannot be treated by any other
analytical method.

4.1 Additional unknown functions

Define the functions w1(ω, ν) and w2(ω, ν)as the edge Green’s functions for the Neumann
problem as follows.

For each κ small enough define ŵ1(ω, ν, κ) as the solution of the inhomogeneous Laplace-
Beltrami equation

[
∆̃ + ν2 − 1

4

]
ŵ1(ω, ν, κ) =

1

2

√
π

κ
δ(ϕ− κ) [δ(θ − π/2 + 0)− δ(θ − π/2− 0)] . (26)

Neumann boundary conditions
∂ŵ1

∂θ
= 0

on S and edge conditions (ŵ1 ∼ ζ
1/2
1,2 ) are satisfied by ŵ1. The function w1 is defined as the

limit
w1(ω, ν) = lim

κ→0
ŵ1(ω, ν, κ).

The function w1 is the edge Green’s function for the Neumann problem. It corresponds to the
problem with the source located at the edge L1. The structure of the source is chosen such
that the field is non-trivial (antisymmetric) and has a non-zero limit as κ → 0.
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The function w2 is the edge Green’s function corresponding to the source located at the
edge L2. Define this function using the symmetry relation

w2(θ, ϕ) = w1(π − θ, π/2− ϕ).

It is easy to show that the edge asymptotics of the edge Green’s functions have the form:

vm(φn, ζn) = −δm,n√
π

ζ−1/2
n sin

φn

2
+

2Cm
n√
π

ζ1/2
n sin

φn

2
+ O(ζ3/2

n ) (27)

and

wm(φn, ζn) = −δm,n√
π

ζ−1/2
n cos

ζn

2
+

2Em
n√
π

ζ1/2
n cos

φn

2
+ O(ζ3/2

n ), (28)

where m,n = 1, 2; δ is the Kronecker’s delta; Cm
n and Em

n are some unknown coefficients
depending on ν. Note that for m = 1, n = 2 the value of Cm

n = C1
2 coincides with C1

2(ν) from
formula (21).

Due to the obvious symmetry

C1
2 = C2

1 , E1
2 = E2

1 , C1
1 = C2

2 , E1
1 = E2

2 . (29)

Here and below we omit the argument ν of the functions v1,2, w1,2 and of the coefficients
Cm

n and Em
n . We assume that the non-resonant case is considered, i.e. that ν belongs neither

to the spectrum of the Dirichlet nor of the Neumann problem. This means that if the field
satisfies the equation (14), boundary conditions of the Dirichlet or Neumann type on S and

the Meixner’s edge conditions (i.e. it grows at the edges no faster than ζ
1/2
n ), then the field is

identically equal to zero.

4.2 Derivation of the coordinate equations for the edge Green’s
functions

Let us prove the following theorem.

Theorem 3 Let the vector U be defined as

U = (v1, v2, w1, w2)T (30)

for any value of ν not belonging to the spectrum of the Dirichlet or Neumann problem. This
vector obeys the coordinate equations of the form

∂

∂θ
U = XU,

∂

∂ϕ
U = YU, (31)

with the coefficients X, Y, whose explicit form is given by the relations (49).

Proof. Call the function v an oversingular combination if it satisfies the Laplace-Beltrami
equation (14), boundary conditions either of the Dirichlet or of the Neumann type on S and
behaves at the edges like

v(φn, ζn) =
Cn√

π
ζ−1/2
n sin

φn

2
+ O(ζ1/2

n )
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in the Dirichlet case or

v(φn, ζn) =
En√

π
ζ−1/2
n cos

φn

2
+ O(ζ1/2

n )

in the Neumann case. Note that the oversingular functions do not satisfy the Meixner’s edge
conditions, so they are not necessarily equal to zero.

In the non-resonant case it is clear that

v = −C1v
1 − C2v

2, or v = −E1w
1 − E2w

2. (32)

(Note that, for example, the combination u + C1v
1 + C2v

2 in the Dirichlet case satisfies the
Laplace-Beltrami equation (14), boundary and edge conditions, therefore this combination
should be equal to zero.)

Derive the coordinate equation for the vector U of (30) as follows. Seek for the combinations
of the derivatives of v1,2 and w1,2 that are oversingular functions. Note that generally the
combination of the derivatives of v1,2 and w1,2 do not satisfy the conditions of the oversingular
solution since the functions v and w are oversingular themselves, and therefore their derivatives
normally contain the terms of ζ

−3/2
1,2 . So, only several specific combinations can be found, that

form the basis of the oversingular differentiations of v1,2 and w1,2.
Introduce 3 differential operators T1, T2 and T3 as follows. The operator T3 is simply

T3 =
∂

∂ϕ
, (33)

where ϕ is the spherical coordinate used above. Two other operators are also differentiations
with respect to the rotations, but the axes are chosen as the x and y directions, respectively.
Thus,

T1 =
∂

∂φ1

, T2 =
∂

∂φ2

, (34)

where φ1 and φ2 are considered as the global (rather than local) coordinates. The explicit form
of T1 and T2 in the coordinates (θ, ϕ) is as follows:

T1 = − sin ϕ
∂

∂θ
− cos ϕ

cos θ

sin θ

∂

∂ϕ
,

T2 = cos ϕ
∂

∂θ
− sin ϕ

cos θ

sin θ

∂

∂ϕ

Obviously, if some function v obeys the Laplace-Beltrami equation, then Tj[v] also obeys
the same equation. This follows from the fact that the Laplace-Beltrami operator is invariant
with respect to any rotation of the sphere.

It is less obvious but easy to prove that if v obeys the Dirichlet boundary conditions on
the sides of S, then T3[u] obeys the Dirichlet conditions, while T1[v] and T2[v] obey the Neu-
mann condition on S. Conversely, if v obeys Neumann condition, then T3[v] obeys Neumann
condition, while T1[v] and T2[v] obey the Dirichlet condition.

The first four oversingular combinations are the following:

T1[v
1], T1[w

1], T2[v
2], T2[w

2].
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The other four combinations are more complicated:

T3[v
1] + T2[w

1], T2[v
1]− T3[w

1], T3[v
2]− T1[w

2], T2[v
2] + T3[w

2].

Studying the asymptotics of the oversingular combinations, we obtain eight representations of
the form (32):

T1[v
1] = C1

2w
2 +

1

2
w1, (35)

T1[w
1] = E1

2v
2 − 1

2
v1, (36)

T2[v
2] = C2

1w
1 +

1

2
w2, (37)

T2[w
2] = E2

1v
1 − 1

2
v2, (38)

T3[v
1] + T2[w

1] = (C1
1 + E1

1)v
1 − C1

2v
2, (39)

T2[v
1]− T3[w

1] = (C1
1 + E1

1)w
1 − E1

2w
2, (40)

T3[v
2]− T1[w

2] = C2
1v

1 − (C2
2 + E2

2)v
2, (41)

T2[v
2] + T3[w

2] = E2
1w

1 + (C2
2 + E2

2)w
2. (42)

The system (35)–(42) consists of 8 equations and contains 8 independent derivatives of
4 functions v1,2 and w1,2 with respect to the coordinates (θ, ϕ). So, one can express these
derivatives separately. The representation of the derivatives has the form of the equations
(31) written for the vector U defined by (30) and the coefficients are defined by the formulae
(49) given in Appendix A. These equations are the coordinate equations for the edge Green’s
functions. ¤

4.3 Some properties of the coordinate equations

Consider the equations (31), (49). They have the following properties.
(i) The solvability condition should be valid:

∂

∂θ

(
∂

∂ϕ
U

)
=

∂

∂ϕ

(
∂

∂θ
U

)
.

A sufficient condition for this is as follows:

XY −YX +
∂

∂ϕ
X− ∂

∂θ
Y = 0. (43)

One can check directly, that the matrices (49) obey this condition identically.
(ii) All components of the vector U should satisfy the Laplace-Beltrami equation (14). Note
that due to (31),

∆̃U =

[
X2 +

cos θ

sin θ
X +

∂

∂θ
X +

1

sin2 θ

(
Y2 +

∂

∂ϕ
Y

)]
U. (44)
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A direct substitution of (49) into (44) shows that

X2 +
cos θ

sin θ
X +

∂

∂θ
X +

1

sin2 θ

(
Y2 +

∂

∂ϕ
Y

)
=

(
1

4
+ (C1

1 + E1
1)

2 − (C1
2)2 − (E1

2)
2

)
I, (45)

where I is the 4× 4 identity matrix. Comparing (45) with
(

∆̃ + ν2 − 1

4

)
U = 0, (46)

we conclude that (46) is fulfilled provided that

(C1
1 + E1

1)
2 = (C1

2)2 + (E1
2)

2 − ν2. (47)

The last relation makes it possible to express the combination C1
1+E1

1 in terms of the parameters
C1

2 and E1
2 . It means that the coefficients of the equations (31), (49) contain only two unknown

numerical parameters depending on ν, namely C1
2 and E1

2 . We remind that the parameter C1
2 is

very important, because it stands in the embedding formula (21). (iii) Consider the equations
(31) at the cut S. Note that the boundary conditions on S have the form

v1 = 0, v2 = 0,
∂

∂θ
w1 = 0,

∂

∂θ
w2 = 0. (48)

Due to the form of the matrix X (see (49)) the last two conditions follow from the first two
ones. Due to the form of the matrix Y, if v1 = v2 = 0 at a single point of S, then the same
conditions are valid on the whole cut S. I.e., it is necessary to check the boundary conditions
(only two of them!) at a single point of S.
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Appendix. The explicit form of the coordinate equations

The explicit expressions for the coefficients of the coordinate equations (31) are as follows:

X =




X1
1 X1

2 X1
3 X1

4

X2
1 X2

2 X2
3 X2

4

X3
1 X3

2 X3
3 X3

4

X4
1 X4

2 X4
3 X4

4


 , Y =




Y 1
1 Y 1

2 Y 1
3 Y 1

4

Y 2
1 Y 2

2 Y 2
3 Y 2

4

Y 3
1 Y 3

2 Y 3
3 Y 3

4

Y 4
1 Y 4

2 Y 4
3 Y 4

4


 , (49)

where

X1
1 = cos ϕ cos θ sin θ

cos ϕ− 2(C1
1 + E1

1) sin ϕ

2(1− cos2 ϕ sin2 θ)
,

X1
2 = − cos ϕ cos θ sin θ

E1
2 cos ϕ− C1

2 sin ϕ

1− cos2 ϕ sin2 θ
,
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X1
3 =

(C1
1 + E1

1) cos ϕ cos2 θ − sin ϕ

2(1− cos2 ϕ sin2 θ)

X1
4 = −E1

2 cos ϕ cos2 θ + C1
2 sin ϕ

1− cos2 ϕ sin2 θ

X2
1 = sin ϕ cos θ sin θ

C1
2 cos ϕ− E1

2 sin ϕ

1− sin2 ϕ sin2 θ
,

X2
2 = − sin ϕ cos θ sin θ

2(C1
1 + E1

1) cos ϕ− sin ϕ

2(1− sin2 ϕ sin2 θ)
,

X2
3 =

C1
2 cos ϕ + E1

2 cos2 θ sin ϕ

1− sin2 ϕ sin2 θ

X2
4 =

cos ϕ− 2(C1
1 + E1

1) cos2 θ sin ϕ

2(1− sin2 ϕ sin2 θ)

X3
1 =

2(C1
1 + E1

1) cos ϕ cos2 θ + sin ϕ

2(1− cos2 ϕ sin2 θ)
,

X3
2 = −C1

2 cos ϕ cos2 θ + E1
2 sin ϕ

1− cos2 ϕ sin2 θ
,

X3
3 = cos ϕ cos θ sin θ

2(C1
1 + E1

1) sin ϕ + cos ϕ

2(1− cos2 ϕ sin2 θ)

X3
4 = cos ϕ cos θ sin θ

C1
2 cos ϕ− E1

2 sin ϕ

1− cos2 ϕ sin2 θ

X4
1 =

E1
2 cos ϕ + C1

2 cos2 θ sin ϕ

1− sin2 ϕ sin2 θ
,

X4
2 = −2(C1

1 + E1
1) cos2 θ sin ϕ + cos ϕ

2(1− sin2 ϕ sin2 θ)
,

X4
3 = sin ϕ cos θ sin θ

C1
2 sin ϕ− E1

2 cos ϕ

1− sin2 ϕ sin2 θ

X4
4 = sin ϕ cos θ sin θ

sin ϕ + 2(C1
1 + E1

1) cos ϕ

2(1− sin2 ϕ sin2 θ)

Y 1
1 = sin ϕ sin2 θ

2(C1
1 + E1

1) sin ϕ− cos ϕ

2(1− cos2 ϕ sin2 θ)
,

Y 1
2 = sin ϕ sin2 θ

E1
2 cos ϕ− C1

2 sin ϕ

1− cos2 ϕ sin2 θ
,

Y 1
3 = − cos θ sin θ

2(C1
1 + E1

1) sin ϕ + cos ϕ

2(1− cos2 ϕ sin2 θ)

Y 1
4 = cos θ sin θ

E1
2 sin ϕ− C1

2 cos ϕ

1− cos2 ϕ sin2 θ
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Y 2
1 = cos ϕ sin2 θ

C1
2 cos ϕ− E1

2 sin ϕ

1− sin2 ϕ sin2 θ
,

Y 2
2 = − cos ϕ sin2 θ

2(C1
1 + E1

1) cos ϕ− sin ϕ

2(1− sin2 ϕ sin2 θ)
,

Y 2
3 = cos θ sin θ

E1
2 cos ϕ− C1

2 sin ϕ

1− sin2 ϕ sin2 θ

Y 2
4 = − cos θ sin θ

sin ϕ + 2(C1
1 + E1

1) cos ϕ

2(1− sin2 ϕ sin2 θ)

Y 3
1 = cos θ sin θ

cos ϕ− 2(C1
1 + E1

1) sin ϕ

2(1− cos2 ϕ sin2 θ)
,

Y 3
2 = − cos θ sin θ

E1
2 cos ϕ− C1

2 sin ϕ

1− cos2 ϕ sin2 θ
,

Y 3
3 = − sin ϕ sin2 θ

cos ϕ + 2(C1
1 + E1

1) sin ϕ

2(1− cos2 ϕ sin2 θ)

Y 3
4 = sin ϕ sin2 θ

E1
2 sin ϕ− C1

2 cos ϕ

1− cos2 ϕ sin2 θ

Y 4
1 = cos θ sin θ

C1
2 cos ϕ− E1

2 sin ϕ

1− sin2 ϕ sin2 θ
,

Y 4
2 = − cos θ sin θ

2(C1
1 + E1

1) cos ϕ− sin ϕ

2(1− sin2 ϕ sin2 θ)
,

Y 4
3 = cos ϕ sin2 θ

C1
2 sin ϕ− E1

2 cos ϕ

1− sin2 ϕ sin2 θ

Y 4
4 = cos ϕ sin2 θ

sin ϕ + 2(C1
1 + E1

1) cos ϕ

2(1− sin2 ϕ sin2 θ)
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