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The aim of this work is to fill the gap between
the embedding formulae for cones and the modified
Smyshlyaev’s formulae. Embedding formulae for
cones represent the directivity of the scattered field
as multiple integrals over spatial variables. Modi-
fied Smyshlyaev’s formulae represent the same di-
rectivity as a single contour integral over parameter
ν. This situation resembles the convolution theorem
for Fourier transform: multiple convolutions can be
represented as a single integral over frequency.
Originally, modified Smyshlyaev’s formulae have
been ”guessed” and then proved by study of the
poles of the integrands instead of being regularly de-
rived. Extension of the analogy with Fourier trans-
form allows to obtain a regular method for deriving
the modified Smyshlyaev’s formulae.
To perform this extension we introduce integral
transform of Kontorovich - Lebedev type and prove
for it the analogues of Plancherel’s and convolu-
tion formulae. Using the developed technique we
demonstrate the possibility to derive the modified
Smyshlyaev’s formulae.

1 Introduction

1.1 Motivation

As an example we are considering the scalar prob-
lem of plane wave diffraction by a quarter plane.
As usual, our main goal is to find the diffraction
coefficient of the scattered field. General approach
to this kind of diffraction problems is separation of
radial variable and studying the Laplace-Beltrami
problem on the unit sphere. This approach has
been significantly developed by Smyshlyaev and co-
workers [1]. He has obtained the following formula
for the diffraction coefficient:

f(ω, ω0) =
i

π

∫

γ

e−iπνg(ω, ω0, ν)νdν, (1)

where ω0 and ω are directions of incidence and scat-
tering, ν is the separation parameter and g is the
Green’s function of the of the spherical problem.

Further extension of this approach has been
achieved in work [2] in which the formulae of the
same type as (1) were obtained. In these formu-
lae integrand is constructed from so called spher-
ical edge Green’s functions, which can be treated

as a limiting case of Green’s function g as the
source location approaches edge of the scatterer.
Integrals over separation parameter in these modi-
fied Smyshlyaev’s formulae have better convergence
properties than one in (1).

Derivation of these formulae consists of three
steps. At first an embedding operator is applied to
the total field and the result is expressed in terms
of edge Green’s functions in 3D space. This ex-
pression is called embedding formula. Then the di-
rectivities of edge Green’s functions in 3D space
are represented as the series over the eigenvalues of
Laplace-Beltrami operator. By using the embed-
ding formula one obtains the series for the diffrac-
tion coefficient of the scattered field. Final step is
transformation of the series to the contour integral.
In fact the resulting formula had to be guessed and
then checked by the study of the poles of the inte-
grands instead of being regularly derived.

This approach can also be applied to more com-
plicated problems, for example to the problem of
diffraction by the wedge of the cube [3]. Guess-
ing of the formulae here becomes more difficult and
potentially lead to errors.

This paper fills the mentioned gap between the
embedding formulae for cones and the modified
Smyshlyaev formulae, giving a regular way of de-
riving the later from the former.

1.2 Basic ideas

There are embedding formulae of two sorts:

f(ω, ω0) =

∞∫

0

f1(ω, r)f2(ω0, r)
dr

r
(2)

and

f(ω, ω0) =

=

∞∫

0

dr

r

∞∫

0

f1(ω, r)g(r, r′)f2(ω0, r
′)

dr′

r′
(3)
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with f1,2 of the form (15) (possibly multiplied by
r−n for some integer n), and g(r, r′) of the form
(17). Note that f1,2 and g are expressed through
contour integrals over parameter ν. Formally, a
direct implementation of (2) or (3) leads to calcu-
lation of three (in case of (2)) or five (in case of
(3)) nested integrals over ν and r. However, fortu-
nately, these integrals can be converted into mod-
ified Smyshlyaev’s formulae expressing f(ω, ω0) as
a single integral over the parameter ν.

The possibility of reducing several integrals to
a single one reminds the well-known properties of
Fourier transform. Let us explain this analogy. Let
F̂1,2(ξ) be transforms of the functions F1,2(x). Let
also Ĝ(ξ) be transform of function G(x), and we
introduce the function G(x, y) = G(x− y). Then

∞∫

−∞
F1(x)F ∗2 (x)dx =

∞∫

−∞
F̂1(ξ)F̂ ∗2 (ξ)dξ (4)

which is the Plancherel’s theorem, and

∞∫

−∞

∞∫

−∞
F1(x)G(x, y)F ∗2 (y)dxdy =

=

∞∫

−∞
F̂1(ξ)Ĝ(ξ)F̂ ∗2 (ξ)dξ, (5)

which is a combination of the Plancherel’s theo-
rem and the convolution theorem. Here superscript
star stands for complex conjugation. If F1,2(x) and
G(x, y) are expressed as integrals containing F̂1,2(ξ)
and Ĝ(ξ) then the left-hand side of (4) contains
three integrals, and the left-hand side of (5) con-
tains five integrals. In both cases the right-hand
side contains only one integral.

The most straightforward way to extend this
analogy to the conical case is to use the
Kontorovich-Lebedev transform. However, we can-
not use it directly because of convergence problems.
In particular, for the classical Kontorovich-Lebedev
procedure it is necessary for the parameter k0 of the
Helmholtz equation to be purely imaginary, which
is hardly interesting from the practical point of
view.

That is why, we develop a slightly different ap-
proach. Instead of the Kontorovich-Lebedev trans-
form we use another representation that differs by
the choice of the cylindrical function (Bessel instead
of Hankel), and, more important, by the contour of

integration. As the result, the functions participat-
ing in the representation are no longer orthogonal.
However, for our needs the orthogonality (and even
the uniqueness and invertibility of the representa-
tion) is not relevant, we need only the analogs of
Plancherel formula and convolution formula. That
is why, we prove only these important formulae
without using orthogonality and demonstrate the
possibility of deriving the modified Smyshlyaev’s
formulae.

2 Basic relations

2.1 Problem statement

We are considering the scalar Dirichlet problem
of diffraction by quarter plane Q = {(x, y, z)|x ≥
0, y ≥ 0, z = 0} (see Fig. 1).

usc

Figure 1: Geometry of the problem.

Let the Helmholtz equation

∆u + k2
0u = 0 (6)

be valid in the 3D space (x, y, z). The time depen-
dence of all variables is of the form e−iΩt and is
omitted henceforth.

The Dirichlet boundary conditions fulfilled on
both surfaces of the quarter plane is of the form:

u|Q = 0. (7)

Let the incident field have the form of a plane
wave coming from direction ω0:

uinc = e−ik0(ω0xx+ω0yy+ω0zz). (8)

Beside the governing equation and boundary con-
ditions, the radiation, edge and vertex conditions
should be imposed to make a proper problem for-
mulation. We do not discuss these matters here
and refer reader to [2].
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Our main interest is to find the diffraction coeffi-
cient f(ω, ω0) of the scattered field usc = u− uinc,
which we define as the amplitude of the spherical
wave diffracted by the tip of the quarter plane:

usc(r, ω) = 2π
eik0r

k0r
f(ω, ω0)+O(r−2), r →∞. (9)

It depends not only on the scattering direction ω
but also on the direction ω0 from which the incident
wave comes.

2.2 Edge Green’s functions in 3D space

Let us consider Greens function G(x, y, z; x0, y0, z0)
of our problem, i.e. the function which obeys the
equation

∆G + k2
0G = δ(x− x0)δ(y − y0)δ(z − z0) (10)

and the same boundary, edge, vertex and radiation
conditions as field u does.

We define the pair of edge Green’s functions in
3D space Gx(x, y, z;X) and Gy(x, y, z;Y ) as follow-
ing limits:

Gx(x, y, z; X) = lim
ε→0

√
π

ε
G(x, y, z; X,−ε, 0)

and

Gy(x, y, z;Y ) = lim
ε→0

√
π

ε
G(x, y, z;−ε, Y, 0), (11)

i.e. as fields produced by sources lying on the edges
of the scatterer (see Fig. 2).

Figure 2: To the definition of the edge Green’s
function Gy.

Hereafter we consider the diffraction coefficients
fx(ω,X) and fy(ω, Y ) of the edge Green’s functions
Gx and Gy correspondingly, defined in the same
way as f in (9).

In [2] the embedding formulae which connects di-
rectivity f with directivities fx and fy are derived.

Here we present one of them, namely

f =
4π2i

k2
0(ωy + ω0y)

∞∫

0

fx(ω;X)fx(ω0; X)dX (12)

which is of the form (2). Embedding formula of
type (3) is also presented in [2], but we do not con-
sider it here for the sake of brevity.

2.3 Edge Green’s functions on the unit
sphere

Solving the problem (6)-(8), after the separation
of the radial variable one comes to the Laplace-
Beltrami problem on the unit sphere S with a cut
Sq produced by the quarter plane Sq = S ∩Q (see
Fig. 3).

q

Figure 3: Geometry of the problem on the
sphere.

We introduce the Green’s function g(ω, ω0, ν) of
this sphere as the solution of the following problem

[
∆̃ +

(
ν2 − 1

4

)]
g = δ(ω − ω0), (13)

which obeys Dirichlet conditions on the cut: g|Sq =
0 and Meixner conditions at the ends of the cut
(see [2]). It is the function participating in (1).

Let us define the edge Green’s functions on the
sphere vx(ω, ν) and vy(ω, ν) as the following limits:

vx(ω, ν) = lim
κ→0

√
π

κ
g(ω, ωκx, ν) and

vy(ω, ν) = lim
κ→0

√
π

κ
g(ω, ωκy, ν),

(14)

where ωκx is the point with conventional spherical
coordinates θ = π/2 and φ = −κ (see Fig. 4) and
similarly for ωκy.
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q

Figure 4: To the definition of the edge Green’s
function on the sphere.

Our aim now is to transform (12) into the mod-
ified Smyshlyaev’s formula, i.e. the contour inte-
gral over parameter ν from the function involving
vx(ω, ν). In order to do it in the regular way we
introduce the integral transform of Kontorovich-
Lebedev type.

3 The representation of Kontorovich-
Lebedev type

3.1 Definition of the representation

We introduce the representation for two types of
functions. For a function of a single variable h(r),
r > 0 the representation is as follows:

h(r) =
1
2

∫

γ

e−iπν/2Jν(k0r)φ(ν)ν dν. (15)

Here φ(ν) is the transformant of h(r). Contour γ
is shown in Fig. 5.

We assume that
1. function φ(ν) is even

φ(−ν) = φ(ν); (16)

2. singularities of φ(ν) are only isolated poles
on the real axis, and φ(ν) is regular at ν = 0;

3. function φ(ν) decays exponentially as
|Im[ν]| → ∞.

Let function g(r, r′), r, r′ > 0 of two variables
admit the following representation:

g(r, r′) =
1
2

∫

γ

Jν(k0r<)H(1)
ν (k0r>)ψ(ν)ν dν, (17)

where r< = min(r, r′) and r> = max(r, r′) If ψ(ν)
obeys conditions 1–3 listed above, this function is
called the transformant of g.

Im[ν]

Re[ν]

γ

Figure 5: Contour γ.

Note that there is a considerable difference be-
tween representations (15) and (17). In (15) a func-
tion of one variable is represented through another
function of one variable, while in (17) a function of
two variables is represented through a function of
one variable. Thus, representation (17) exists for a
very restricted class of functions.

We do not need the transformation converting
h(r) into φ(ν). We also do not need uniqueness of
the transformants in (15) and (17). The functions
that have these representations emerge naturally
from solving the Helmholtz equation in conical co-
ordinates [2].

Let us now prove some important for our goals
properties of the representation.

4 Properties of the representation

Here we study two types of integrals emerging in
embedding formulae. The first one is an analog of
a convolution property.

Theorem 1 Let h(r) and g(r, r′) be functions hav-
ing representations (15) and (17) with transfor-
mants φ and ψ, respectively. Then

∞∫

0

g(r, r′)h(r′)
dr′

r′
=

=
1
2

∫

γ

e−iπν/2Jν(k0r)φ(ν)ψ(ν)ν dν, (18)

i.e. the integral in the l.-h.s. of (18) has the rep-
resentation of the form (15) with the transformant
φ(ν)ψ(ν).

The proof is as follows. Transform the contours
of integration in representations of φ and ψ to γµ

and γν correspondingly (see Fig. 6). Then con-
vert the product g(r, r′)h(r′) to double integral over
cartesian product γν × γµ.
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Im[ν]

Re[ν]

γµ

γν

Figure 6: Contours γµ and γν .

Denote the integral in the l.-h.s. of (18) by K(r).

K(r) =
1
4

∞∫

0

dr′

r′

∫∫

γν×γµ

e−i π
2 µµ ν φ(µ)ψ(ν)×

× Jµ(k0r
′)Jν(k0r<)H(1)

ν (k0r>) dµ dν (19)

Change the integration order and calculate the in-
tegral over r first. Namely, find

I =

∞∫

0

Jµ(k0r
′)Jν(k0r<)H(1)

ν (k0r>)
dr′

r′
. (20)

Represent I as a sum of two integrals

I = H(1)
ν (k0r)

r∫

0

Jµ(k0r
′)Jν(k0r

′)
dr′

r′
+

+ Jν(k0r)

∞∫

r

Jµ(k0r
′)H(1)

ν (k0r
′)

dr′

r′
. (21)

Use a well-known formula
∫ r

Z(1)
µ (k0r

′)Z(2)
ν (k0r

′)
dr′

r′
=

=
1

µ + ν
Z(1)

µ (k0r)Z(2)
ν (k0r)−

− k0r

µ2 − ν2

[
Z

(1)
µ+1(k0r)Z(2)

ν (k0r)−

−Z(1)
µ (k0r)Z

(2)
ν+1(k0r)

]
, (22)

where Z(1) and Z(2) stand for general cylindrical
functions (i.e. they can be replaced by J or H(1) in
our formulae). Performing all computations, get

I =
2i
π

Jµ(k0r)− eiπ(µ−ν)/2Jν(k0r)
µ2 − ν2

. (23)

Note that I is regular at µ = ν.

Substitute (23) into (19). Split the double in-
tegral into sum of two terms and convert them to
iterated integrals.

K(r) =

= − i
2π




∫

γµ

∫

γν

e−i π
2 µ

ν2 − µ2
Jµµ ν φ(µ)ψ(ν) dν dµ +

+
∫

γν

∫

γµ

e−i π
2 ν

µ2 − ν2
Jνµ ν φ(µ)ψ(ν) dν dµ


 . (24)

In the first term transform the contour of integra-
tion over ν into γ′ν shown at Fig. 7 (the part with
Im[ν] < 0 is symmetrically reflected with respect
to zero). Due to relation (16) this change does not
affect the integral. For each non-zero µ the integral
over ν can be then taken by residue method after
closing the integration path at +i∞.

Im[ν]

Re[ν]

γµ

γ′

ν

Im[ν]

Re[ν]

γ′

µ

γν

Figure 7: Contours γ′µ and γ′ν .

In the second term the contour γµ is deformed
into γ′µ. It is also closed in the upper half-plane.

The first term gives non-trivial poles at ν = ±µ,
and the second term compensates the singularity of
the first term at µ = ν = 0. The result is (18).

The second result reminds of the Plancherel’s
equation.

Theorem 2 Let h1(r) and h2(r) be functions that
have the representation (15) with transformants φ1
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and φ2 respectively. Then

∞∫

0

h1(r)h2(r)
dr

r
=

=
1
4

∫

γ

e−iπνφ1(ν)φ2(ν) ν dν. (25)

To prove it let us follow the procedure used for
proving the previous theorem, i.e. deform the con-
tours into γµ and γν , change the order of integra-
tion, then use well-known formula

∞∫

0

Jµ(k0r)Jν(k0r)
dr

r
=

2
π

sin[π(µ− ν)/2]
µ2 − ν2

. (26)

After that we split the integral into two, using the
symmetry deform the contour of inner integration
into γ′µ or γ′ν and calculate the inner integral by
residues. As the result, we get (25).

Concluding this section let us prove the theo-
rem describing how multiplication by 1/r affects
the representation of the function.

Theorem 3 Let h(r) have representation (15) with
the transformant φ. Let ν∗ be the only pole of φ(ν)
on the segment (0, 1].

Then

h(r)
r

=
1
2

∫

γ+Γ

e−iπν/2Jν(k0r)φ̃(ν)νdν (27)

where φ̃(ν) = ik0
2ν [φ(ν−1)−φ(ν+1)] and additional

contour Γ shown at Fig. 8 consists of two loops en-
circling points ν∗ − 1 and 1− ν∗.

Im[ν]

Re[ν]

γ

1−1

ν∗−ν∗
1 − ν∗ν∗ − 1

ΓΓ

Figure 8: Contour Γ.

The proof is as follows. Let us take into account
the well-known formula

Jν(z)
z

=
Jν+1(z) + Jν−1(z)

2ν
(28)

Thus,

h(r)
r

=
ik0

4

[∫

γ+1

e−iπν/2Jν(k0r)φ(ν − 1)dν−

−
∫

γ−1

e−iπν/2Jν(k0r)φ(ν + 1)dν

]
. (29)

Now note that the only pole of φ(ν − 1) on (0, 1]
is 1 − ν∗ while φ(ν + 1) is regular at it, and vice
versa for the point ν∗−1. This allows us to deform
contours γ ± 1 to γ taking care of singularities and
write (27). Note that φ̃(ν) obeys all the conditions
imposed on proper transformant.

Now let us show how the described above meth-
ods help in derivation of modified Smyshlyaev’s for-
mulae.

5 Example of derivation of a
modified Smyshlyaev’s formula

We will be working with embedding formula (12):

f =
4π2i

k2
0(ωy + ω0y)

∞∫

0

fx(ω; X)fx(ω0; X)dX. (30)

In [2] the following formulae are proven for fx

and vx:

fx(ω, X) =

=

√
k0

2π

e−i 3π
4

X

∞∑

j=1

CjΦj(ω)Jνj (k0X)e−i π
2 νj , (31)

vx(ω, ν) = 2
∞∑

j=1

CjΦj(ω)
ν2 − ν2

j

, (32)

where νj and Φj(ω) are eigenvalues and eigenfunc-
tions of Laplace-Beltrami operator on sphere with a
Dirichlet cut and Cj are some constants describing
the behavior of Φj(ω) near the ends of the cut.

From (31) and (32) it obviously follows, that

fx(ω;X) =

=

√
k0

2π
e−i π

4

2πX

∫

γ

e−i π
2 νJν(k0X)vx(ω, ν)ν dν (33)

i.e.

fx(ω;X) =
A

X
h(ω; X), A =

√
k0

2π

e−iπ/4

π
(34)
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where h(ω; X) for each fixed ω has representation
(15) with the transformant vx(ω, ν). Thus,

f(ω, ω0) =
2/πk0

ξ + ξ0

∞∫

0

h(ω; X)
h(ω0; X)

X

dr

r
(35)

i.e. the integral has the form of (25).
To proceed transform h(ω0; X)/X according to

(27). Here we use the empirical fact that the only
pole of vx on (0, 1] is ν1 ≡ ν∗. Then deform the
contour γ + Γ in its representation into contour γµ

(see Fig. 9). In order to assure convergence of forth-
coming integrals over X let us shift the contour γ
in representation of h(ω;X) to γ′ = γ + 1/2. It is
possible, since 1/2 < ν∗ < 1 and thus vx(ω, ν) has
no poles on (0, 1/2].

Im[ν]

Re[ν]

1

2

1
−

1

2
−1

ν∗−ν∗

1 − ν∗

ν∗ − 1

γµ

γ′

Figure 9: Deformation of the contour γ + Γ

Now let us follow the procedure of proof of
”Plancherel’s” theorem. We convert the prod-
uct h(ω; X)h(ω0;X)/X to the double integral over
γµ × γ′, substitute it into the (35) and do the in-
tegration over X first. As a result one obtains the
following:

f(ω, ω0) =
1

2π2(ωx + ω0x)
×

×
∫∫

γµ×γ′

vx(ω, ν)φ(µ)µν
e−iπν − e−iπµ

µ2 − ν2
dνdµ, (36)

where

φ(µ) =
vx(ω0, µ− 1)− vx(ω0, µ + 1)

2µ
.

Now let us transform γ +1/2 to γν (Fig. 10) and
follow the rest of the procedure. As a result we
obtain the sought modified Smyshlyaev’s formula:

f(ω, ω0) =
i/4π

ωx + ω0x

∫

γ+Γ

e−iπµvx(ω, µ)×

× [vx(ω0, µ− 1)− vx(ω0, µ + 1)]dν. (37)

Im[ν]

Re[ν]

1

2

1
−

1

2
−1

ν∗−ν∗

1 − ν∗

ν∗ − 1

γµ

γν

Figure 10: Deformation of the contour γ′

6 Conclusion

Let us briefly summarize the work. A new integral
transform of Kontorovich-Lebedev type was intro-
duced. Analogues of convolution and Plancherel’s
theorems were proven for it without demands for
orthogonality, uniqueness and invertibility. Devel-
oped technique gives a neat method of transforma-
tion of spatial integrals emerging in embedding for-
mulae for conical problems into contour integrals of
Smyshlyaev’s type. As an example of usage of this
technique a modified Smyshlyaev’s formula for the
problem of diffraction of plane wave by a Dirichlet
quarter plane was derived in a way different from
the original work [2].
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