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Abstract
The application of the classic Wiener-Hopf method involves the procedure of additive

decomposition of a function into two terms, one of which is regular in the upper com-
plex half-plane and another is regular in the lower half-plane. Usually this operation is
performed by using the integral operator with Cauchi’s kernel. In the current paper we
show that this procedure can be performed in many cases using the ordinary differential
equations. We obtain the representation of the seeked functions in quadratures.

1 Introduction

Wiener-Hopf method is used in many problems of diffraction and mechanics [1]; as a rule, these
problems have mixed boundary conditions. Here we study only the scalar problems.

Let us discuss briefly the scheme of Wiener-Hopf method. Consider the functional equation

V+(k) + K(k)V−(k) = N(k), (1.1)

where k — is a complex independent variable, K and N are some known functions, V+ and
V− are unknown functions. We require that the function V+ is regular in the upper half-plane
of k, the function V− is regular in the lower half-plane. Besides, we imply that the unknown
functions have some known order of growth at infinity and at singular points.

The equation (1.1) is solved in two steps. on the first step the coefficient K is factorized,
i.e. the following representation is seeked:

K(k) = K−(k)/K+(k), (1.2)

where K− ΥK+ are some functions, regular and having no zeros in the lower and the upper
half-planes respectively. Also these functions have some known growth at infinity. Usually, the
logarithmic derivatives are used for calculation of K− and K+:

K ′

K
=

K ′
−

K
− K ′

+

K
,

where prime denotes the differentiation with respect to k. Now factorization is reduced to
additive decomposition, which is performed using the integral operator with Cauchi’s kernel:

K ′
+

K
= −F+

[
K ′

K

]
,

K ′
−

K
= −F−

[
K ′

K

]
, (1.3)
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where for arbitrary V (k) decaying on the real axis

F+[V (k)] =
1

2πi

∞∫

−∞

V (τ)dτ

τ − k
for Im k > 0, F−[V (k)] =

1

2πi

∞∫

−∞

V (τ)dτ

τ − k
for Im k > 0.

(1.4)
The values of F+[V ] are defined by the formula (1.4) only for Im[k] > 0. To determine the
values of the desired functions for other k one must perform analytic continuation.

When the logarithmic derivatives of K+ and K− are calculated, one can reconstruct the
functions using the obvious formula

K± = exp

{∫ k K ′
±

K±
dτ.

}

Th equation (1.1) now can be rewritten in the form

K+(k)V+(k) + K−(k)V−(k) = K+(k)N(k). (1.5)

Note that the left-hand part is decomposed into two terms, regular in the lower and the upper
half-planes respectively.

On the second step we decompose the right-hand part of (1.5) into the terms, regular in
the upper and lower half-planes:

K+(k)N(k) = M+(k) + M−(k),

where
M+ = F+[K+(k)R(k)], M− = −F−[K+(k)R(k)].

Afterwards, the equation (1.5) can be rewritten in the form

K+(k)V+(k)−M+(k) = −K−(k)V−(k) + M−(k). (1.6)

This equation is valid for the analytic continuation of the functions, involved in it. It means
that the function, which is regular in the upper half-plane (the left-hand side) is equal to the
functtion, which is regular in the lower half-plane. The restrictions on the growth guarantee
that this function grows no faster than a power of k. Applying the Liouville’s theorem, one
concludes that

K+(k)V+(k)−M+(k) = −K−(k)V−(k) + M−(k) = Q(k),

where Q is a polynomial of some known order, whose coefficients are undetermined yet. These
coefficients must be found using some additional physical constraints. In the simpliest cases
this polynomial is identically equal to zero. Using the last equation, one can find unknown
functions.

It is clear that application of Wiener-Hopf method involves the usage of the operators
F±. This gives the representation of the unknown functions in the form of the integrals with
parameters. Such a representation is convenient enough only if the integrals can be calculated
analytically. However, in most cases it is not so.
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The representation of the functions K± and M± in the form of the integrals with parameters
can be inconvenient, for example, if it is necessary to solve a sequence of successive Wiener-hopf
problems, i.e. if the field scattered by on obstacle falls on another one e.t.c. This situation occurs
when the solution of complicated diffraction problem is seeked in the form of diffraction series.
Besides, this represenation gives a lack of information if one needs to find the dependence of
the solution on some parameters of the problem (the wavelength, the angle of incidence e.t.c.).

Here we propose another approach to additive decomposition of functions. Namely, for a
wide class of functions V (k) we show that the functions F±[V ] are the solutions of ordinary
differential equations with the coefficients of simple structure. In some cases these equations can
be solved in the quadratures, thus providing convenient representations of unknown functions.
In other cases this representation provides additional information or can be used for effective
numerical calculation of F±[V ].

2 Elementary properties of the operators F±
Here we study the elementary properties of the operators F±. Th properties 1, 2 and 3 are
obvious. Th first states thelinearity of the operators, the second states the invariance with
respect to translations along the real axis. The fourth property is less obvious. All further
calculations are based on it.

We imply below that the functions V , V1, V2 are regular in the strip | Im[k]| < δ for some
δ > 0 and decay along the real axis as some negative power of k.
1. For arbitrary constant c and arbitrary V (k), V1(k), V2(k)

F±[cV (k)] = cF±[V (k)], F±[V1(k) + V2(k)] = F±[V1(k)] + F±[V2(k)].

2. The identity is valid:
(F±[V ])′ = F±[V ′] (2.1)

This property can be proven using the integration by parts:

(F±[V (k)])′ =
1

2πi

∞∫

−∞

V (τ)dτ

(τ − k)2
= − 1

2πi

∞∫

−∞

V (τ)d

(
1

τ − k

)
=

1

2πi

∞∫

−∞

V ′(τ)dτ

τ − k
.

3. Let R(k) be a rational function growing at infinity no faster than k−1. Then F±[R] are also
rational functions. This can be easily proven by decomposing R into the partial fractions
4. For arbitry ξ not lying on the real axis,

F±

[
V

k − ξ

]
=

F±[V ]

k − ξ
+
F(V, ξ)

k − ξ
, (2.2)

where

F(V, ξ) = − 1

2πi

∞∫

−∞

V (τ)dτ

τ − ξ
. (2.3)
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The last property follows from the elementary relation

1

(τ − ξ)(τ − k)
=

1

k − ξ

(
1

τ − k
− 1

τ − ξ

)
.

Note that the value F(V, ξ) does not depend on k, i.e. it is a constant with respect to k.
The equation (2.3) can be interpreted as follows. The operators F± perform the decom-

position of V into the terms V = V+ − V−, regular in the upper and the lower half-planes,
respectively. Try to decompose the function V/(k − ξ) the same way. The decomposition of
the form

V

k − ξ
=

V+

k − ξ
− V−

k − ξ

is almost valid, but one of the terms has the undesired pole at the point k = ξ. However, this
pole can be easily subtracted, so

F(V, ξ) =

{ −V+(ξ), ξ for Im[ξ] > 0
−V−(ξ), ξ for Im[ξ] < 0

(2.4)

The fourth property can be generalized. Applying it several times, we obtain for an integer
n > 0

F±

[
V (k)

(k − ξ)n

]
=

F±[V ]

(k − ξ)n
+

n∑
m=1

1

(k − ξ)m
F

(
V

(k − ξ)n−m
, ξ

)
. (2.5)

Note that all values F(. . .) are constants with respect to k.
Let R(k) be a rational function of k groing at infinity no faster than a constant. Decomposing

R into the partial fractions and the equation (2.5), we obtain

F±[R(k)V (k)] = R(k)F±[V ] + r(k), (2.6)

where r(k) is a rational function of k, whose coefficients can be calculated using (2.5) and the
definition of the operators F .

3 Differential equations for F±[V ]

Let the following differential equation is known:




V ′
1

. . .
V ′

n


 =




a11 . . . a1n

. . . . . . . . .
an1 . . . ann







V1

. . .
Vn


 +




R1

. . .
Rn


 , (3.1)

where aml(k) are rational functions of k, groing at infinity no faster than conctants; R1 . . . Rn

are rational functions groing no faster than k−1; V1(k) = V (k). The functions V2(k) . . . Vn(k)
can be, for example, the derivatives of V if the differential equation of order n is known for
V (k). We remind that prime denotes the differentiation with respect to k.

Note that the equations of the form (3.1) are obeyed by many practically important func-
tions, for example all algebraic functions.
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Applying the relation (2.6), we obtain:




(F±[V1])
′

. . .
(F±[Vn])′


 =




a11 . . . a1n

. . . . . . . . .
an1 . . . ann







F±[V1]
. . .

F±[Vn]


 +




r1

. . .
rn


 , (3.2)

where r1(k) . . . rn(k) are new rational functions, groing at infinity no faster than k−1. The
coefficients of these functions can be calculated using (2.6) and (2.3). Represent the functions
aml(k) explicitly in the form of the sum of partial fractions:

aml(k) = a0
ml +

∑

α,β

aα,β
ml

(k − kα)β
.

Then

rm = F±[Rm] +
n∑

l=1

∑

α,β

β∑
γ=1

aα,β
ml

(k − kα)γ
F

(
Vl

(k − kα)β−γ
, kα

)
(3.3)

Note that the first term is rational function of k according to the property 3.
The relation (3.2) is a system of ordinary differential equations for F±[Vm] with rational

coefficients and rational inhomegenuety.
Let the equation (3.1) R1(k) = . . . = Rn(k) ≡ 0, i.e. the equation is homogenuous. This

equation has n different solutions: (V s
1 (k) . . . V s

n (k)), where the upper index s corresponds to the
number of the solution and runs over the range 1 . . . n. It is not difficult to find these solutions.
As the first solution (V 1

1 . . . V 1
n ) we take ∆¸ΓΞflΞ‹ (V1 . . . Vn), and other n − 1 solutions are

different analytic continuations of the first solution.
The solution of (3.2) can be obtained by variation of the constants:

V±(k) = V̂(k)

(∫ k

k0

V̂−1(τ)r(τ)dτ + c

)
, (3.4)

where r is the vector of functions rm, V± is the vector of functions F±[Vm], c is the vector of
the constants of integration,

V̂ =




V 1
1 (k) . . . V n

1 (k)
. . . . . . . . .

V 1
n (k) . . . V n

n (k)


 ,

k0 ia almost arbitry point, such that k0 is not a singular point of the equation (3.1), and besides,
k0 belongs to the upper half-plane if F+[V ] is seeked and to lower one if F−[V ] is seeked. It is
obvious that the following vector equation is valid: F(V, k0) = −V̂c, where V is the vector of
functions Vm, m = 1 . . . n. Finally,

V±(k) = V̂(k)

∫ k

k0

V̂−1(τ)r(τ)dτ − V̂(k)V̂−1(k0)F(V, k0). (3.5)

Note that the infomogeneous system (3.1) for V1 . . . Vn can be easily transformed into a
homogeneous sytem by introducing a new function Vn+1 ≡ 1/(k − k0) to the set V1 . . . Vn.
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Finally, we have the representation (3.5) for F±[V ] in quadratures instead of the inegral
with parameters as in (1.4). The obtained representation has the following advantages. First,
the integral in (3.5) can be simplier than the corresponding Cauchi’s integral. Second, the
representation (3.5) is valid on the whole Riemann surface of F±[V ], while the represenation
by Cauchi’s integral is valid only either in the upper or in the lower half-plane and it requires
analytic continuation. Third, numerical calculation of F±[V ] using (3.5) is faster than that
with Cauchi’s integral. Namely, we need the values of F±[V ] at N points of the real axis, the
Cauchi’s integral calculation requires ∼ N2 operations and our representation requires only
∼ N operations.

4 Examples

Here we considet some typical cases of differential equations for F±[V ]. The examples are taken
from the problems of diffraction theory.

1. Consider the function

V (k) =
eidk

√
(k2 − k2

1)(k
2 − k2

2) . . . (k2 − k2
h)

. (4.1)

We imply that Im[km] > 0 for all m = 1 . . . h. Such functions emerge in 2D problems of
diffraction by a halfspace, separating different media. If the elastic media are studied the
number of different wavenumbers h can be as much as 6. The presence of the exponential
factor indicates the presence of the screens of finite dimensions.

The function obeys the homogeneous equation of order 1:

V ′ = KV, K(k) = id− k

k2 − k2
1

− k

k2 − k2
2

. . .− k

k2 − k2
h

(4.2)

Let us find the function V+ = F+[V ]. According to the theory developed above, it obeys
the equation

V ′
+ = KV + r, r(k) = −1

2

h∑
m=1

(F(V, km)

k − km

+
F(V,−km)

k + km

)
. (4.3)

The general solution of this equation is given by

V+(k) = V (k)

∫ k r(τ)

V (τ)
dτ. (4.4)

The lower limit of integration must be chosen such that the function V+ is regular at k1. For
this one can simply choose the lower limit to be equal to k1. One can prove that the function
V+ defined this way is also regular at all other km, m = 2 . . . h.

Thus, the representation for V+(k) is obtained, For d = 0 and h = 1 this representation
coincides with known formula [1]:

V+(k) =
arccos(k/k1)

π
√

k2 − k2
1

.
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For d = 0 and h = 2 the function V+ is represented in ellyptic functions. Such representation
is refered in [1] (the author is grateful to Dr.V.D.Lukjanov for this reference).

2. Consider the function

V (k) =
1

(
√

k2 − k2
1 − k2)1/2

, (4.5)

where k1, k2 are the constants, Im[k1, k2] > 0. Such functions emerge in 3D diffraction problems.
Let the function F+[V ] is seeked.

Let be V1(k) = V (k), V2(k) = V (k)/
√

k2 − k2
1. We have the system

V ′
1 = − k

2(k2 − k2
1 − k2

2)
V1 − kk2

2(k2 − k2
1 − k2

2)
V2, (4.6)

V ′
2 = − kk2

2(k2 − k2
1)(k

2 − k2
1 − k2

2)
V1 +

k(2k2
2 − 3k2 + 3k2

1)

2(k2 − k2
1)(k

2 − k2
1 − k2

2)
V2. (4.7)

The coefficients of the system have simple poles at k = ±k1 and k = ±
√

k2
1 + k2

2 = ±k3.
According to the theory developed above, we have the system of equations for F+[V1] and

F+[V2]:

(F+[V1])
′ = − kF+[V1]

2(k2 − k2
1 − k2

2)
− kk2F+[V2]

2(k2 − k2
1 − k2

2)
+ r1, (4.8)

(F+[V2])
′ = − kk2F+[V1]

2(k2 − k2
1)(k

2 − k2
1 − k2

2)
+

k(2k2
2 − 3k2 + 3k2

1)F+[V2]

2(k2 − k2
1)(k

2 − k2
1 − k2

2)
+ r2, (4.9)

where

r1(k) = −F(V1, k3) + k2F(V2, k3)

4(k − k3)
− F(V1,−k3) + k2F(V2,−k3)

4(k + k3)
(4.10)

r2(k) =
F(V1, k1)− 2k2F(V2, k1)

4k2(k − k1)
+
F(V1,−k1)− 2k2F(V2,−k1)

4k2(k + k1)
−

−F(V1, k3) + k2F(V2, k3)

4k2(k − k3)
− F(V1,−k3) + k2F(V2,−k3)

4k2(k + k3)
. (4.11)

Thus, the equation of the form (3.2) is constructed. We need to find the matrix V̂ consisting of
different solutions of (4.6), (4.7) to be able to apply the formula (3.5). In our case this matrix
can be found easily:

V̂ =




1

(
√

k2 − k2
1 − k2)1/2

;
1

(
√

k2 − k2
1 + k2)1/2

1√
k2 − k2

1(
√

k2 − k2
1 − k2)1/2

; − 1√
k2 − k2

1(
√

k2 − k2
1 + k2)1/2




.

Using (3.5), we conclude that F±[V ] can be expressed in Abelian integrals. This conclusion is
valid for any algebraic function V .

3. Consider the function

V (k) = exp{ikx0 + i
√

k2
0 − k2y0}, (4.12)
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where x0 and y0 are real constants, y0 > 0; Im[k0] > 0, the branch of the square root is chosen
such way that the function V (k) decays as k → ±∞ along the real axis. Such functions emerge
in the problems of diffraction of cylindrical waves.

Let be V1(k) = V (k), V2(k) =
√

k2
0 − k2V (k). The functions V1, V2 obey the equations

V ′
1 = ix0V1 +

iky0

k2 − k2
0

V2, (4.13)

V ′
2 = −iy0V1 +

(
−ix0 +

k

k2 − k2
0

)
V2. (4.14)

The system of infomogeneous equations can be constructed for F±[V1,2]. The inhomogeneous
part of it is represented by the functions

r1(k) =
iy0F(V2, k0)

2(k − k0)
+

iy0F(V2,−k0)

2(k + k0)
,

r2(k) =
F(V2, k0)

2(k − k0)
+
F(V2,−k0)

2(k + k0)
.

The matrix V̂ has the form

V̂ =




exp{ikx0 + i
√

k2
0 − k2y0}; exp{ikx0 − i

√
k2

0 − k2y0}
√

k2
0 − k2 exp{ikx0 + i

√
k2

0 − k2y0}; −
√

k2
0 − k2 exp{ikx0 − i

√
k2

0 − k2y0}


 .

Now the formula (3.5) can be applied.
Note that in the second coloumn of V̂ there are exponentially groing functions. However,

one can still aply the method, because it is required only that the functions in the first coloumn
are decaying.

5 Conclusion remarks

In the current paper we constructed the representation for the functions of the form F±[V ],
where the function V (k) is a solution of a linear homogeneous differential equation with rational
coefficients. For example, this class involves the functions A(k) exp{B(k)}, where A and B are
algebraic functions. We show that if B(k) ≡ 0, then the result can be represented in Abelian
integrals.

The current paper shows the links between the results obtained in [4], [5] and the classical
Wiener-Hopf method. In the first of these works it was shown that the solution of the problem
of a plane wave diffraction on an ideal strip is a solution of a differential equation with rational
coefficients. Note that Wiener-Hoph method cannot be applied to this problem. In the second
paper the diffraction series was constructed for the problem diffraction by a strip, i.e. the
process of diffraction was treated as the sequaence of the acts of diffraction by the edges of the
strip. Both papers utilised the theorey of ordinary differential equations. Some sophisticated
properties of Fuchsian equations were found to be useful when the dependence of the solution
on the paprameter was studied. Note that earlier ordinary differential equations were used for
solving the problem of diffraction by a strip in [2] and [3]. It was the purpose of the current
paper to show that the solution of the diffraction problem obtained by classic Wiener-Hopf
method obeys an ordinary differential equation, namely the equation (3.2).
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