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Abstract

We consider the problem of diffraction of a plane by a quarter-plane with
Dirichlet boundary conditions. For this problem exist various expressions for
diffraction coefficient. These expressions have the form of contour integrals
over separation parameter. Integrands are constructed from the solutions of
Laplace-Beltrami problems on the unit sphere with a cut produced by the
quarter- plane. In this paper we derive embedding formulae which connect
these solutions and show the possibility to derive expressions for diffraction
coefficient from one another.
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1. Introduction

We are considering the scalar problem of plane wave diffraction by a
quarter-plane. Our main goal is to find the diffraction coefficient of the
scattered field.

Since a plane sector is a degenerated case of an elliptic cone, this problem
has an explicit solution in sphero-conal coordinates [1, 2]. This solution is a
series of Lamé functions. Computations with this series are quite ineffective
and it is difficult to extract from it the structure of the diffracted field.

Another approach to problems of diffraction by cones is separation of ra-
dial variable and studying the Laplace-Beltrami problem on the unit sphere
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for each value of separation parameter. This approach has been signifi-
cantly developed by Smyshlyaev and co-workers [3]. Applying the Bessel-
Sommerfeld technique he has obtained the following formula for the diffrac-
tion coefficient:

f(ω, ω0) =
i

π

ˆ

γ

e−iπνg(ω, ω0, ν)νdν, (1)

where ω0 and ω are directions of incidence and scattering, ν is the separation
parameter and g is the Green’s function of the of the spherical problem.

To compute with this formula one has to solve an integral equation for
Green’s function for each ν [4]. Integral over ν is rapidly convergent only
in the domain of directions in which propagates only the spherical wave
diffracted by the tip of the cone. It diverges in domain of directions where ge-
ometrically reflected wave or the waves diffracted by the edges of the quarter-
plane exist. It is still possible to use Smyshlyaev’s formula in the domain of
divergence [5] but in this case the integral should be understood in sense of
Abel-Poisson limit, which is difficult for numerical computations.

In works [6, 7] the formulae of the same type as (1) were obtained. In
these formulae integrand is constructed from so called spherical edge Green’s
functions, which are the fields of singular sources lying at the edges of the
scatterer. These formulae are based on application of embedding operators
to the field in 3D space. These operators cancel the geometrically reflected
wave and one of the waves diffracted by the edges (or both of them). Thus
the domain of convergence of contour integral in these formulae is wider
than than one in (1). When both waves diffracted by the edges are canceled
the domain of divergence consists of directions in which propagate waves
consequently scattered by both edges. For some directions of incidence this
domain does not even exist. Computation of spherical edge Green’s functions
can be performed by using integral equations [8], but there exist much more
effective way to compute them based on the equations with multidimensional
time [9]. So these formulae are more effective than Smyshlyaev’s formula.

Basic steps of derivation of modified Smyshlyaev’s formulae in [7] are
as follows. Application of an embedding operator to the field in 3D space
allows to express the diffraction coefficient in terms of directivities of edge
Green’s functions in 3D space. This expression is called embedding formula.
The directivities of edge Green’s functions in 3D space can be represented as
contour integrals over the separation parameter. Final step is substitution
of these representations into the embedding formula and transformation of
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resulting multiple integral to a single contour integral over the separation
parameter.

In this paper we use a different technique of derivation of these formu-
lae. We apply embedding operators directly to solutions of Laplace-Beltrami
problems on the unit sphere. This approach allows to obtain non-trivial rela-
tions between these solutions and consequently derive all the formulae from
Smyshlyaev’s formula (1).

The paper is organized as follows. Section 2 contains the problem formu-
lation and introduces the notions used throughout the paper. In section 3
we introduce embedding operators on the unit sphere and, their properties
and derive the embedding formulae. In section 4 we use these formulae for
derivation of MSF from Smyshlyaev’s formula (1).

2. Basic relations

2.1. Problem formulation

We seek the scalar field u which satisfies the Helmholtz equation

∆u + k2
0u = 0 (2)

in the 3D space (x, y, z). The time dependence of all variables is of the
form e−iΩt and is omitted henceforth. The scatterer is the quarter-plane
Q = {(x, y, z)|x ≥ 0, y ≥ 0, z = 0} (see Fig. 1). The field u satisfies the

Figure 1: Geometry of the problem.

Dirichlet boundary conditions on the quarter-plane:

u|Q = 0. (3)
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The incident field uin is the plane wave coming from direction defined by the
unit vector ω0:

uin(r) = e−ik0(ω0r). (4)

This problem can be symmetrized in a standard way. The field u is
represented as a sum of even and odd functions of z. Solution for the odd part
contains only the incident wave and geometrically reflected wave. In what
follows we denote as u only the even part which obeys the homogeneous
Neumann conditions on the complement Q̃ of the quarter-plane Q to the
whole xy plane:

∂u

∂n

∣

∣

∣

∣

Q̃

= 0. (5)

Beside the governing equation and boundary conditions, the radiation,
edge and vertex conditions should be imposed to make a proper problem
formulation. We do not discuss these matters here for the sake of brevity
and refer the reader to [6, 7].

The most important feature of the field u is the diffraction coefficient
f(ω, ω0) of its scattered part usc = u−uin. It can be defined as the amplitude
of the spherical wave diffracted by the tip of the quarter plane:

usc(r, ω) = 2π
eik0r

k0r
f(ω, ω0) + O(r−2), as r → ∞. (6)

This definition is valid for directions ω in which propagate only the spher-
ical wave. It can be analytically continued in the domain of directions in
which the geometrically reflected wave or waves diffracted by the edges of
the quarter-plane exist.

2.2. Spectrum of the spherical problem

A natural way to solve our problem is to separate the radial variable and
to study the spherical problem for each value of separation constant. This
leads to the following eigenvalue problem on the unit sphere S with the cut
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Sq = S ∩ Q “produced” by the quarter plane Q (see Fig. 2):

∆̃νΦ(ω) = 0, (7)

Φ|Sq
= 0, (8)

∂Φ

∂n

∣

∣

∣

∣

S̃q

= 0, (9)

Φ ∼ ζ
1/2
1 sin

φ1

2
+ O(ζ

3/2
1 ), as ζ1 → 0, (10)

Φ ∼ ζ
1/2
2 sin

φ2

2
+ O(ζ

3/2
2 ), as ζ2 → 0. (11)

Here S̃q is the complement of Sq to the whole equator; (ζ1, φ1) and (ζ2, φ2)
are the spherical coordinates shown on Fig. 2; ∆̃ν = ∆̃ + ν2 − 1/4, and ∆̃
is the Laplace-Beltrami operator on the unit sphere, which in conventional
spherical coordinates (ζ, φ) has the form

∆̃ =
1

sin ζ

∂

∂ζ

(

sin ζ
∂

∂ζ

)

+
1

sin2 ζ

∂2

∂φ2
. (12)

q

Figure 2: Geometry of the problem on the sphere.

This problem has a solution only for a discrete set of real values of ν =
±νn, n = 1, 2... which form the spectrum of the problem. Since the self-
adjoint operator −∆̃ has a positive discrete spectrum [3] we can write that
1/2 ≤ ν1 ≤ ν2 ≤ . . . νn → ∞.

2.3. Edge Green’s functions on the unit sphere

Besides the eigenfunctions an important role in solution of our problem
play the Green’s function and spherical edge Green’s functions. Let us in-
troduce them. The definitions below exactly repeat the ones in [3] and [6].
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The Green’s function g(ω, ω0, ν) is the solution of the following Laplace-
Beltrami problem

∆̃νg(ω, ω0, ν) = δ(ω − ω0), (13)

which obeys Dirichlet conditions on the cut: g|Sq
= 0, Neumann conditions

on the rest of the equator ∂g
∂n
|Sq

= 0, and Meixner conditions at the ends of
the cut (see [6]). It is the function participating in (1). Note that g(ω, ω0, ν)
is even function of ν and points ν = ±νn are its poles [3].

We define the spherical edge Green’s functions v1(ω, ν) and v2(ω, ν) as
the following limits:

v1(ω, ν) = lim
κ→0

√

π

κ
g(ω, ωκx, ν) and (14)

v2(ω, ν) = lim
κ→0

√

π

κ
g(ω, ωκy, ν), (15)

where ωκx is the point with spherical coordinates ζ1 = κ and φ1 = π
(see Fig. 3) and similarly for ωκy. One can prove [9, 6] that these func-

q
x

Figure 3: To the definition of the edge Green’s function on the sphere.

tions have the following asymptotics near the edges of the cut:

v1(ζ1, φ1, ν) = − 1√
π

ζ
−1/2
1 sin

φ1

2
+ O(ζ

1/2
1 ), as ζ1 → 0, (16)

v2(ζ1, φ1, ν) =
2C1

2 (ν)√
π

ζ
1/2
1 sin

φ1

2
+ O(ζ

3/2
1 ), as ζ1 → 0, (17)

v2(ζ2, φ2, ν) = − 1√
π

ζ
−1/2
2 sin

φ2

2
+ O(ζ

1/2
2 ), as ζ2 → 0, (18)

v1(ζ2, φ2, ν) =
2C1

2 (ν)√
π

ζ
1/2
2 sin

φ2

2
+ O(ζ

3/2
2 ), as ζ2 → 0. (19)
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Here C1
2(ν) is an unknown coefficient. Note that v1,2(ω, ν) and C1

2(ν) are
even functions of ν and points ν = ±νn are their poles. From definition of
edge Green’s functions and reciprocity principle follow the asymptotics of
Green’s function at the edges of the cut:

g(ζ1, φ1; ω0, ν) =
v1(ω0, ν)√

π
ζ

1/2
1 sin

φ1

2
+ O(ζ

3/2
1 ), as ζ1 → 0, (20)

g(ζ2, φ2; ω0, ν) =
v2(ω0, ν)√

π
ζ

1/2
2 sin

φ2

2
+ O(ζ

3/2
2 ), as ζ2 → 0. (21)

Edge Green’s functions participate in the following formulae for diffrac-
tion coefficient, which we call modified Smyshlyaev’s formulae [6, 7].

f(ω, ω0) =
i/4π

ωx + ω0x

ˆ

γ+Γ

e−iπµv2(ω, µ)φ2(ω0, µ)µdµ; (22)

f(ω, ω0) =
i/4π

ωy + ω0y

ˆ

γ+Γ

e−iπµv1(ω, µ)φ1(ω0, µ)µdµ; (23)

f(ω, ω0) =
i/8π

(ωx + ω0x)(ωy + ω0y)

ˆ

γ+Γ

e−iπν [V 1(ω, ω0, ν) + V 2(ω, ω0, ν)+

+ 2νω0xv
1(ω, ν)φ1(ω0, ν) + 2νω0yv

2(ω, ν)φ2(ω0, ν)]dν, (24)

f(ω, ω0) =
i/8π

(ωx + ω0x)(ωy + ω0y)

ˆ

γ+Γ

e−iπµC1
2(µ)[φ1(ω, µ)φ2(ω0, µ)−

− φ1(ω0, µ)φ2(ω, µ)]µdµ. (25)

Here we use the following notation:

φk(ω, µ) =
vk(ω, µ− 1) − vk(ω, µ + 1)

µ
, k = 1, 2. (26)

V k(ω, ω0, ν) = vk(ω, ν + 1)vk(ω0, ν − 1)−
− vk(ω, ν − 1)vk(ω0, ν + 1), k = 1, 2.

(27)

Contour of integration γ + Γ is shown on Fig. 4. Contour Γ consists of two
loops encircling points 1 − ν1 and ν1 − 1.
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Reν

Imν

γ

−1
0

1

1 − ν1ν1 − 1

Figure 4: Contour γ + Γ.

3. Embedding formulae on the unit sphere

3.1. Embedding operators

We introduce operators on the unit sphere Xν and Yν by the following
identities.

∂

∂x
rν−1/2Ω(ω) = rν−3/2Xν [Ω(ω)], (28)

∂

∂y
rν−1/2Ω(ω) = rν−3/2Yν [Ω(ω)], (29)

We call Xν and Yν embedding operators. These operators have the following
representations in spherical coordinates (ζ1, φ1) and (ζ2, φ2) shown on Fig. 2.

Xν =

(

ν − 1

2

)

cos ζ1 − sin ζ1
∂

∂ζ1

, (30)

Yν =

(

ν − 1

2

)

sin ζ1 cos φ1 + cos ζ1 cos φ1
∂

∂ζ1
− sin φ1

sin ζ1

∂

∂φ1
, (31)

Xν =

(

ν − 1

2

)

sin ζ2 cos φ2 + cos ζ2 cos φ2
∂

∂ζ2
− sin φ2

sin ζ2

∂

∂φ2
, (32)

Yν =

(

ν − 1

2

)

cos ζ2 − sin ζ2
∂

∂ζ2

. (33)

Let us formulate two important properties of these operators.

Lemma 1. If some function Ω(ω) satisfies the boundary conditions

Ω(ω)|Sq
= 0, and

∂

∂n
Ω(ω)|S̃q

= 0, (34)

then Xν [Ω(ω)] and Yν[Ω(ω)] also satisfy these conditions.
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Proof. From conditions of lemma it follows that combination rν−1/2Ω(ω)
satisfies homogeneous Dirichlet conditions on Q and homogeneous Neumann
conditions on Q̃. Since differentiation with respect to x and y preserve these
conditions, from definition of Xν and Yν we obtain the statement of the
lemma.

Lemma 2. If some function Ω(ω) satisfies the equation

∆̃νΩ(ω) = h(ω), (35)

then Xν [Ω(ω)] and Yν[Ω(ω)] satisfy the following equations

∆̃ν−1Xν [Ω(ω)] = Xν−2[h(ω)], (36)

∆̃ν−1Yν [Ω(ω)] = Yν−2[h(ω)], (37)

Proof. We will prove the property only for operator Xν . Proof for Yν is
literally the same. From conditions of lemma it follows that combination
rν−1/2Ω(ω) satisfies the equation

∆[rν−1/2Ω(ω)] = rν−5/2h(ω). (38)

Since Laplacian commutes with differentiation with respect to x, we can write
that

∂

∂x
rν−5/2h(ω) = ∆[

∂

∂x
rν−1/2Ω(ω)], (39)

Applying the definition of Xν we transform this equation into the following

rν−7/2Xν−2[h(ω)] = ∆[rν−3/2Xν [Ω(ω)]]. (40)

Statement of the lemma directly follows from the last equation.

3.2. Embedding formulae

Properties of the operators Xν and Yν formulated above allow us to prove
two theorems which are main results of this paper.

Theorem 1. If ν and ν±1 do not belong to the spectrum, then the following

formulae are valid.

2νωxv
1(ω, ν) = ν[v1(ω, ν − 1) + v1(ω, ν + 1)]+

+C1
2 (ν)[v2(ω, ν − 1) − v2(ω, ν + 1)],

(41)

2νωyv
2(ω, ν) = ν[v2(ω, ν − 1) + v2(ω, ν + 1)]+

+C1
2(ν)[v1(ω, ν − 1) − v1(ω, ν + 1)].

(42)
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Proof. We will prove only the first formula. Proof of the second is the same.
Let us consider the function Xν [v

1(ω, ν)]. Applying the representations (30)
and (32) to asymptotics (16) and (19) we obtain the following asymptotics
of Xν [v

1(ω, ν)] at the edges of the cut:

Xν [v
1(ζ1, φ1, ν)] = − ν√

π
ζ
−1/2
1 sin

φ1

2
+ O(ζ

1/2
1 ), as ζ1 → 0, (43)

Xν [v
1(ζ2, φ2, ν)] = −C1

2 (ν)√
π

ζ
−1/2
2 sin

φ2

2
+ O(ζ

1/2
2 ), as ζ2 → 0. (44)

Thus combination Xν [v
1(ω, ν)] − νv1(ω, ν − 1) − C1

2 (ν)v2(ω, ν − 1) satisfies
Meixner conditions at at the edges of the cut. From lemmas 1 and 2 and
definition of edge Green’s functions it follows that it also satisfies homoge-
neous Dirichlet conditions on Sq, homogeneous Neumann conditions on S̃q

and equation

∆̃ν−1[Xν [v
1(ω, ν)] − νv1(ω, ν − 1) − C1

2 (ν)v2(ω, ν − 1)] = 0. (45)

Appealing to the uniqueness theorem we conclude that this combination is
identically zero. Thus, taking into account representation (30), we can write

(

ν − 1

2

)

cos ζ1v
1(ω, ν) − sin ζ1

∂

∂ζ1

v1(ω, ν) =

= νv1(ω, ν − 1) + C1
2 (ν)v2(ω, ν − 1). (46)

Substituting in this equation −ν instead of ν and taking into account even-
ness of edge Green’s functions and C1

2(ν) we obtain

(

−ν − 1

2

)

cos ζ1v
1(ω, ν) − sin ζ1

∂

∂ζ1
v1(ω, ν) =

= −νv1(ω, ν + 1) + C1
2(ν)v2(ω, ν + 1). (47)

Subtracting these equations and taking into account that cos ζ1 = ωx we
obtain (41).

In what follows we will omit arguments ω and ω0 of Green’s function
g where it doesn’t lead to a confusion. We denote spherical coordinates
(ζ1,2, φ1,2) of ω0 as (ζ0

1,2, φ
0
1,2).
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Theorem 2. If ν and ν±1 do not belong to the spectrum, then the following

formulae are valid.

2νωxg(ν) = νω0x[g(ν − 1) + g(ν + 1)] +
ν

2
v2(ω0, ν)φ2(ω, ν)−

−
(

3ω0x

2
+ sin ζ0

1

∂

∂ζ0
1

)

[g(ν − 1) − g(ν + 1)].
(48)

2νωyg(ν) = νω0y[g(ν − 1) + g(ν + 1)] +
ν

2
v1(ω0, ν)φ1(ω, ν)−

−
(

3ω0y

2
+ sin ζ0

2

∂

∂ζ0
2

)

[g(ν − 1) − g(ν + 1)].
(49)

Proof. We will prove only the first formula. Proof of the second is the same.
Let us consider the function Xν [g(ω, ω0, ν)]. Applying the representations
(30) and (32) to asymptotics (20) and (21) we obtain the following asymp-
totics of Xν [g(ω, ω0, ν)] at the edges of the cut:

Xν [g(ζ1, φ1; ω0, ν)] = O(ζ
1/2
1 ), as ζ1 → 0, (50)

Xν [g(ζ2, φ2; ω0, ν)] = −v2(ω0, ν)

2
√

π
ζ
−1/2
2 sin

φ2

2
+ O(ζ

1/2
2 ), as ζ2 → 0. (51)

Thus combination

g∗(ω, ω0, ν) := Xν [g(ω, ω0, ν)] − v2(ω0, ν)v2(ω, ν − 1)/2 (52)

satisfies Meixner conditions at at the edges of the cut. From lemmas 1 and 2
and definition of Green’s function it follows that it also satisfies homogeneous
Dirichlet conditions on Sq, homogeneous Neumann conditions on S̃q and
equation

∆̃ν−1g∗(ω, ω0, ν) = Xν−2[δ(ω − ω0)]. (53)

Taking into account representation (30) we can write

Xν−2[δ(ω − ω0)] =

(

ν − 5

2

)

cos ζ1δ(ω − ω0) − sin ζ1
∂

∂ζ1
δ(ω − ω0). (54)

Using the properties of delta function this expression can be transformed as
follows

Xν−2[δ(ω − ω0)] =

(

ν − 3

2

)

cos ζ0
1δ(ω − ω0) − sin ζ0

1

∂

∂ζ0
1

δ(ω − ω0). (55)
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Thus for g∗(ω, ω0, ν) we obtain

g∗(ω, ω0, ν) =

[(

ν − 3

2

)

cos ζ0
1 − sin ζ0

1

∂

∂ζ0
1

]

g(ω, ω0, ν − 1). (56)

From representation (30) it follows, that
[(

ν − 1

2

)

cos ζ1 − sin ζ1
∂

∂ζ1

]

g(ω, ω0, ν) = v2(ω0, ν)v2(ω, ν − 1)/2+

+

[(

ν − 3

2

)

cos ζ0
1 − sin ζ0

1

∂

∂ζ0
1

]

g(ω, ω0, ν − 1). (57)

Substituting in this equation −ν instead of ν and taking into account even-
ness of Green’s functions we obtain

[(

−ν − 1

2

)

cos ζ1 − sin ζ1
∂

∂ζ1

]

g(ω, ω0, ν) = v2(ω0, ν)v2(ω, ν + 1)/2+

+

[(

−ν − 3

2

)

cos ζ0
1 − sin ζ0

1

∂

∂ζ0
1

]

g(ω, ω0, ν + 1). (58)

Subtracting these equations and taking into account that cos ζ1 = ωx and
cos ζ0

1 = ω0x we obtain (41).

4. Derivation of modified Smyshlyaev’s formulae

Now let us apply embedding formulae obtained above to derivation of
modified Smyshlyaev’s formulae (22) – (25).

4.1. From formula (1) to (22)
Let us multiply formula (48) by e−iπν and integrate the result over the

contour γ + Γ. Since g(ν) is regular at points ν1 − 1 and 1− ν1 we can write
ˆ

γ+Γ

e−iπνg(ν)νdν =

ˆ

γ

e−iπνg(ν)νdν. (59)

Let us consider integral of the first term on the right-hand side of (48).
Changing the variable of integration to µ = ν ± 1 we obtain
ˆ

γ+Γ

e−iπν [g(ν − 1) + g(ν + 1)]νdν =

= −
ˆ

γ+Γ+1

e−iπµg(µ)(µ− 1)dµ −
ˆ

γ+Γ−1

e−iπµg(µ)(µ + 1)dµ. (60)
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Contour of integration in the first term, γ + Γ + 1, is shown on Fig. 5. Since

Reν

Imν

γ + 1

0 1

2 − ν1ν1

Figure 5: Contour γ + Γ + 1.

integrand is regular at point 2 − ν1 and ν1 is its only pole on [0, 1] we can
deform this contour into γ. Performing the same procedure with contour
γ + Γ − 1 we get

ˆ

γ+Γ

e−iπν [g(ν − 1) + g(ν + 1)]νdν = −2

ˆ

γ

e−iπµg(µ)µdµ. (61)

Consideration of the third term on the right-hand side of (48) is essentially
the same. As a result we get

ˆ

γ+Γ

e−iπν [g(ν − 1) − g(ν + 1)]dν = 0. (62)

Combining all these results we obtain

2ωx

ˆ

γ

e−iπνg(ν)νdν = −2ω0x

ˆ

γ

e−iπνg(ν)νdν+

+

ˆ

γ+Γ

e−iπν ν

2
v2(ω0, ν)φ2(ω, ν)dν. (63)

Using (1) we get (22). Formula (23) can be obtained in the same way.
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4.2. From formula (22) to formula (25)

Using the reciprocity principle let us write formula (22) in two equivalent
forms:

f(ω, ω0) =
i/4π

ωx + ω0x

ˆ

γ+Γ

e−iπµv2(ω, µ)φ2(ω0, µ)µdµ, (64)

f(ω, ω0) =
i/4π

ωx + ω0x

ˆ

γ+Γ

e−iπµv2(ω0, µ)φ2(ω, µ)µdµ. (65)

Multiplying the first formula by 2ωx and the second by 2ω0x and using em-
bedding formula (42) we obtain

2ωxf(ω, ω0) =
i/4π

ωx + ω0x

ˆ

γ+Γ

e−iπµ[v2(ω, µ − 1) + v2(ω, µ + 1)+

+C1
2(µ)φ1(ω, µ)]φ2(ω0, µ)µdµ,

(66)

2ω0xf(ω, ω0) =
i/4π

ωx + ω0x

ˆ

γ+Γ

e−iπµ[v2(ω0, µ − 1) + v2(ω0, µ + 1)+

+C1
2(µ)φ1(ω0, µ)]φ2(ω, µ)µdµ.

(67)

Adding up these formulae and using the expression for φ2 we get

2(ωx + ω0x)f(ω, ω0) =
i/4π

ωx + ω0x
×

×





ˆ

γ+Γ

e−iπµ C1
2 (µ)

[

φ1(ω, µ)φ2(ω0, µ) + φ1(ω0, µ)φ2(ω, µ)
]

µdµ+

+

ˆ

γ+Γ

e−iπµ
[

v2(ω, µ − 1)v2(ω0, µ − 1)−

− v2(ω, µ + 1)v2(ω0, µ + 1)
]

dµ



 . (68)

The second integral is equal to zero. This can be obtained in the same way
as (61). Thus, we get (25). Formula (25) can be obtained from (24) by using
(41) and (42) in the same way.
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