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Abstract

Embedding formulae is a powerful tool enabling one to reduce the dimen-

sion of the space of variables for a diffraction problem. Let the scatterer be

finite, planar and perfectly conducting. The idea of the method is to sub-

stitute the initial problem of diffraction of a plane wave by finding an edge

Green’s function, i.e. to solve a problem with a source located near the edge of

a scatterer. Embedding formula is an integral relation connecting the solution

of the initial plane wave incidence problem with the edge Green’s function.

Earlier, the embedding formulae have been derived for acoustic and elastic-

ity problems. Here we derive en embedding formula for an electromagnetic

problem.

1 Introduction

Embedding formulae belong to a rather new type of the relations in diffraction the-
ory. For the first time (up to our knowledge) the embedding formula was introduced
by M. H. Williams [1]. The idea was the following. The 2D scalar problem of scat-
tering of a plane wave by a thin strip has been considered. The main objective of
the research was to find the diffraction coefficient f(ϕ, ϕ0) depending on the angle
of incidence and the angle of scattering. M. H. Williams introduced a set of auxil-
iary functions, who were the diffraction coefficients calculated for the case of a fixed
incidence angle ϕ0, namely for the grazing incidence ϕ0 = ±π/2. Since the inci-
dence angle was fixed, the auxiliary functions depended only on a single variable.
By manipulation with the integral equation M. H. Williams managed to express the
diffraction coefficient f(ϕ, ϕ0) in terms of the auxiliary functions f1,2(ϕ) in rather
simple manner. Since the diffraction coefficient depends on two variables and each
of the auxiliary functions depends on a single variable, we can say that diffraction
coefficient was factorized in some sense.

For the next time, the embedding formula appeared in the paper by P. A. Martin
and G. R. Wickham [2]. They studied the problem of of a plane wave scattering by
a penny-shaped flat crack in a bulk of a solid. As the result of tedious calculations,
the authors obtained a formula expressing the solution for an arbitrary incidence
angle in terms of the solutions related to the grazing incidence.
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After this, the embedding formulae were forgotten for a long time. Recently,
the embedding formulae have been revived Biggs et. al. [3, 4, 5]. They obtained
and checked the embedding formulae for the problems of scattering by several thin
strips, by strips of finite thickness and by the walls of a perforated duct.

In all cases the way to derive the embedding formulae and the form of the
formulae themselves remained rather complicated. As the result, such a bright
result of diffraction theory remained almost unknown to most of the specialists.

The author of this paper in collaboration with Dr. R. V. Craster developed
an easier way to derive the embedding formula for some diffraction problems [6, 7].
Earlier R. V. Craster applied the embedding ideas to solving the ordinary differential
equations of Heun’s type [8].

In our approach we choose the auxiliary functions as follows. Instead of the graz-
ing incident plane wave we use a point source located close to one of the edges of the
scatterer. The solution corresponding to this source is called an edge Green’s func-

tion. Formally, the process of constructing the edge Green’s function is described by
a limiting procedure, since one cannot place a source directly at the edge. However,
the approach based on the edge Green’s functions seems to be simple and physically
transparent.

The purpose of the current work is to derive the embedding formula for the case
of an electromagnetic wave diffraction by a scatterer containing the edges. For this
we use our standard approach and modify it according to the vector nature of the
electromagnetic field.

2 Problem formulation

We study the problem of diffraction of a plane electromagnetic wave by an ideal
(conducting) plane scatterer S of zero thickness located in the plane (x, y). The
edge of the scatterer is a curve Γ, which is smooth enough. A coordinate l is defined
on Γ; here l is the length along the curve counted from some starting point.

Figure 1: Geometry of the problem

At each point of Γ construct a unit internal normal vector η in the plane (x, y).
The angle between this vector and the x-axis will be denoted as Θ(l) (see Figure 1).
Introduce the local cylindrical coordinates near each point of the edge. One of these
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coordinates is l, two other ones are ρ and α (see Figure 2). For the correctness we
can consider these coordinates as curvilinear ones making the edge be described by
the relation ρ = 0.

Figure 2: Local cylindrical coordinates near the edge of the scatterer

The Maxwell equations are assumed to be valid in the 3D space for the vectors
of electric and magnetic fields:

∇× E = ik0H, (1)

∇× H = −ik0E, (2)

∇ ·E = 0, (3)

∇ ·H = 0, (4)

where k0 = Ω/c0, Ω is the circular frequency (the time dependence has the form of
e−iΩt and it is omitted henceforth), c0 is the speed of light.

The boundary conditions on the surfaces of the scatterer can be written using
the unit vector n normal to the surface as

E × n = 0, (5)

i.e. the tangential component of E should be equal to zero.
A correct formulation of the diffraction problem includes the Meixner’s edge

condition. The edge condition denotes the fact that the total energy concentrated
near a finite fragment of the edge is finite. This means that the combination E2+H2

grows slower than ρδ for ρ → 0, where δ > −2.
Formulate the radiation conditions for our problem. The total field should be

represented as a sum of incident wave and the outgoing spherical wave. The form
of the spherical wave is given below.

Introduce the notation for the directions of propagation and for the polarizations
of the plane electromagnetic waves as follows. Denote the directions of incidence
and scattering by the points on a unit sphere (or the unit vectors, which is the same)
ω0 and ω (see Figure 3). The points are identified by their spherical coordinates
ω(θ, ϕ), ω0(θ0, ϕ0).

At each point ω of the sphere define a tangential plane. Let V(ω) be the 2D
vector space in this plane. Indicate the amplitude and polarization of the plane
electromagnetic wave by the vector E belonging to V(ω). The vector H for the
outgoing wave can be expressed by the well-known identity

H = ω × E. (6)
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Figure 3: Directions of incidence and scattering

The incident plane wave in these notations have the form:

E = E0 exp{−ik0(x sin θ0 cos ϕ0 + y sin θ0 sin ϕ0 + z cos θ0)}, (7)

E0 is the amplitude.
Our purpose here will be to establish the embedding relations for the tensor

function f(ω, ω0) having its values in V(ω) ⊗ V(ω0) and describing the spherical
part of the scattered field:

Esc(r, ω) =
2π

k0r
eik0rf(ω, ω0)E0 + O(eik0r(k0r)

−2) for r → ∞, (8)

where r is the distance from the origin.
To make the last formula clear, introduce some orthonormal coordinates in the

spaces V(ω) and V(ω0). Let Ei
sc

— be the components of the polarization of the
scattered wave projected onto V(ω), and let Ej

0 be the components of the vector of
polarization of the incident wave. We are looking for such a tensor f ij, that

Ei
sc(r, ω) =

2π

k0r
eik0r

∑

j

f ij(ω, ω0)E
j
0 + O(eik0r(k0r)

−2). (9)

2.1 Overview of the procedure of deriving the embedding

formula

Let us give a sketch of the procedure leading to the embedding formula. On the first

(auxiliary) step we find the form of the edge asymptotics of our solution obeying the
edge (Meixner’s) conditions. These asymptotics can be obtained from the solution
of the classical Sommerfeld half-plane problem. Also we define the edge Green’s

functions by placing point sources near the edge of the scatterer. Obviously, the
edge Green’s function violates the edge conditions due to the presence of the sources.
However, the degree of growth (the exponent of ρ−1) is only by 1 higher than that
of the solution obeying the edge conditions. We shall say that such a function is
slightly oversingular.

4



On the second step we apply to the total field (both electric and magnetic part
of it) the differential operator

Px =
∂

∂x
+ ik0 sin θ0 cos ϕ0. (10)

Note that this operator kills the incident wave. The result Px[E,H] will be inter-
preted as a new electromagnetic field. This field obeys Maxwell equations and the
radiation condition. Moreover, a simple analysis shows that this field is slightly
oversingular.

On the third step we prove the Lemma stating that any slightly oversingular so-
lution of the Maxwell equation obeying the radiation conditions can be represented
as a linear combination of the edge Green’s functions. The sources are unknown
but they are connected with the main term of edge asymptotics of the field. There-
fore Pz[E,H] can be represented as a convolution-form integral of the edge Green’s
function over the coordinate of the source with the unknown density of the source.
This representation is a weak form of the embedding formula.

On the fourth step we express the density of the source through the edge Green’s
function. The reciprocity theorem is used for this.

3 Edge asymptotics of the field

The edge asymptotics of the field can be found from the solution of the Sommerfeld
problem. Namely, the singular part of the field can be split into two modes: in one
of them the electric component is parallel to the edge, and in another the magnetic
component is parallel to the edge:

{

E

H

}

=

{

EE

HE

}

+

{

EH

HH

}

, (11)

where the fields are determined by their asymptotics as ρ → 0

EE = τ
2CE(x)√

π
ρ1/2 sin

α

2
+ O(ρ), HE =

∇× EE

ik0

, (12)

HH = τ
2CH(x)√

π
ρ1/2 cos

α

2
+ O(ρ), EH = −∇×HH

ik0

. (13)

Here τ is the unit vectors tangential to Γ and directed in the positive l direction.
The functions CE(l) and CH(l) are unknown coefficients playing an important role
below.

4 Edge Green’s functions

Define a pair of edge Green’s functions GE(x, y, z; ξ) and GH(x, y, z; ξ):

GE =

{

EE

HE

}

, GH =

{

EH

HH

}

(14)
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Define the field GE as a result of the following limiting procedure. Denote the
approximations to EE and HE by ÊE and ĤE. Consider the inhomogeneous Maxwell
equations for ÊE and ĤE:

∇× ÊE − ik0ĤE = 0, (15)

∇× ĤE + ik0ÊE =
4π

c0

ĵ, (16)

∇ · ÊE = 0, (17)

∇ · ĤE = 0, (18)

where

ĵ = τ
π1/2

ε3/2
δ(l − ξ)δ(α − π)δ(ρ − ε), (19)

i.e. ĵ is the element of current located at the distance ε from the point l = ξ of the
edge (see Figure 4). The amplitude of the current is chosen to be such that there
exists a finite non-zero limit of the field as ε → 0. Equations (15)–(18) are considered
with the edge conditions, radiation conditions and the boundary conditions.

Figure 4: Location of the source for the edge Green’s function

We define EE and HE as follows:

EE = lim
ε→0

ÊE, HE = lim
ε→0

ĤE. (20)

Consider the edge asymptotics of the edge Green function GE. Due to the source
located near the edge, the field has a complicated structure near the edge along the
l coordinate. Avoid considering this structure by constructing the convolution-type
integral

I(x, y, z) =

∞
∫

−∞

h(x)GE(x, y, z; ξ)dξ,

where h(ξ) is an arbitrary smooth enough density function, which is non-zero on a
small segment of the edge.

Consider the vicinity of the point l = ξ of the edge. Return to the limiting
procedure and find the asymptotics of the solution for some small but finite ε in a
small area near this point.
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Locally the inhomogeneous Maxwell equations can be approximately reduced to
the 2D inhomogeneous Poisson equation

∆⊥Eτ = −h(ξ)
4π

c0

√

π

ε
δ(α − π)δ(ρ − ε), (21)

where ∆⊥ is the Laplacian in the plane l = ξ.
Equation (21) can be solved using the conformal mappings method. Taking into

account the boundary conditions we find:

Eτ ≈ −2h(ξ)

c0

√

π

ε
Re [log(

√
κ −

√
ε) − log(

√
κ +

√
ε)], (22)

where κ = ρ(i sin α − cos α).
Calculating the outer asymptotics of this solution as ε → 0, obtain the following

representation for the electric field in I:

E = τ
4
√

πh(l)

c0

ρ−1/2 sin
α

2
+ O(ρ) for ρ → 0. (23)

The representation for the magnetic field can be obtained by using the equation
(15).

Analogously, the components EH and HH of GH are approximated by the func-
tions ÊH and ĤH , for which the inhomogeneous Maxwell equations are written:

∇× ÊH − ik0ĤH =
4π

c0

k̂, (24)

∇× ĤH + ik0ÊH = 0, (25)

∇ ·EH = 0, (26)

∇ ·HH = 0, (27)

where

k̂ = τ
π1/2

ε3/2
δ(l − ξ)δ(α − π)δ(ρ − ε) (28)

is the unphysical “magnetic current”. Taking the limit ε → 0 we obtain the compo-
nents EH and HH . The H-component of the integral of the form

I(x, y, z) =

∞
∫

−∞

h(ξ)GH(x, y, z; ξ)dξ,

has the edge asymptotics as ρ → 0 looking like

H = −τ
4
√

πh(l)

c0

ρ−1/2 cos
α

2
+ O(ρ). (29)

The E-component is described by equation (25).
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5 Application of the operator Px to the field

Apply the operator Px defined according to (10) to the total field. The result will be
treated as a new electromagnetic field (obviously, Px[E] is its electrical component,
and Px[H] is the magnetic one). This interpretation is possible because Helmholtz
equations are invariant with respect to translations, i.e. they admit differentiations
with respect to the coordinates.

Obviously, the new field obeys the same boundary conditions as the old one.
Also it obeys the radiation condition, i.e. it contains no components coming from
infinity. It could be necessarily equal to zero due to the theorem of uniqueness,
however the differentiation with respect to x makes the edge singularity stronger,
i.e. the edge (Meixner) conditions become broken. Physically it means that the new
field is generated by the sources located near the edge.

The main term of the asymptotics as ρ → 0 can be written as follows:

Px[EE] = −τ
CE(l) cos Θ(l)√

π
ρ−1/2 sin

α

2
+ O(ρ), Px[HE] =

∇× Px[EE]

ik0

, (30)

Px[HH ] = τ
CH(l) cos Θ(l)√

π
ρ−1/2 cos

α

2
+ O(ρ), Px[EH ] = −∇× Px[HH ]

ik0

. (31)

The main terms of these asymptotics violate the edge conditions. The coeficients
at these terms are proportional to the strengths of the linear source of electric and
magnetic type located near the edge.

6 Weak form of the embedding formula

Let the theorem of uniqueness is valid for the chosen scatterer, i.e. the following
statement is true: if the field (E,H) obeys homogeneous Maxwell equations, radiation

conditions, boundary conditions on the scatterer and Meixner edge conditions, then

it is identically equal to zero. We are not going to prove this theorem, however, we
are sure that it is true at least in the simplest cases (S is compact, its boundary is
smooth enough). In worse case if Ω belongs to the discrete spectrum of the problem
and has finite degeneration, the method can be modified.

Now we are ready to formulate the following Lemma:

Lemma 1 Let

F =

{

E

H

}

be a solution of the homogeneous Maxwell equations obeying the radiation conditions

and the ideal conducting boundary conditions on the surfaces of the scatterer intro-

duced above, but violating the Meixner edge conditions. Let the edge behaviour of

the solution is given by the asymptotics as ρ → 0:

{

Eτ

Hτ

}

=
1√
π

ρ−1/2

{

DE(l) sin(α/2)
DH(l) cos(α/2)

}

+ Meixner terms. (32)
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Then

F(x, y, z) =
c0

4π

∫

Γ

(DE(l)GE(x, y, z; l) − DH(l)GH(x, y, z; l)) dl. (33)

To prove the Lemma one can subtract the right-hand side of (33) from F. The
result obeys all the conditions of the theorem of uniqueness, therefore it is zero.

Note that the asymptotics (30), (31) has the form obeying the conditions of the
Lemma. Therefore if U is the solution of the initial plane-wave incidence problem,
then

Pz[U(x, y, z)] = − c0

4π

∫

Γ

cos Θ(l) {CE(l)GE(x, y, z; l) + CH(l)GH(x, y, z; l)} dl.

(34)
where CE,H are the coefficients introduced in (12), (13). We can rewrite this expres-
sion in a slightly different way by introducing the directivities of the edge Green’s
functions. Namely define fE,H by the following asymptotic relation as r → ∞:

EE,H(r, ω; l) =
2π

k0r
eik0rfE,H(ω; l) + O(eik0r(k0r)

−2), (35)

where E
1,2
E,H is the electrical vector of GE,H. Note that the operator Px acts on the

directivity as follows:

f(ω, ω0)
Px−→ ik0(sin θ cos ϕ + sin θ0 cos ϕ0)f(ω, ω0). (36)

Substituting the fields far from the source in (34) by their directivities we obtain

ik0(sin θ cos ϕ + sin θ0 cos ϕ0)f(ω, ω0)E0 =

− c0

4π

∫

Γ

cos Θ(l) {CE(l)fE(ω; l) + CH(l)fH(ω; l)} dl, (37)

We call the last expression the weak form of the embedding formula because
it contains unknown coefficients CE and CH . In the next section we shall express
these coefficients in terms of the edge Green’s functions. Here we just note that
these coefficients depend on the direction of incidence ω0 and the incident field
polarization.

7 Application of the reciprocity principle and ob-

taining the “strong” embedding formula

We formulate the reciprocity principle as follows. Let (E1,H1) and (E2,H2) be two
fields obeying the inhomogeneous Maxwell equations

∇× E1,2 − ik0H1,2 =
4π

c0

k1,2, (38)

∇× H1,2 + ik0E1,2 =
4π

c0

j1,2, (39)

∇ ·E1,2 = 0, (40)

∇ · H1,2 = 0. (41)
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We remind that k denotes the unphysical magnetic currents. Both fields satisfy
boundary, edge and radiation conditions common for both fields. Then

∫∫∫

[(j1 · E2 − j2 · E1) + (k1 · H2 − k2 · H1)] dx dy dz = 0 (42)

where the integral is taken over the whole space (or its part containing the sources).
The relation (42) is the reciprocity principle. The procedure of its derivation is

rather standard. Equation (38) is multiplied by H2,1, equation (39) is multiplied by
E2,1, then the equation are summed and the divergent part is taken out.

Let us apply the relation (42) to transform the embedding formula (37). Con-
sider, say, the directivity fE(ω0; l) of the edge Green’s function GE.

By definition, we can find this directivity as follows. Take the source

j1 =
π1/2

ε3/2
δ(l − ξ)δ(ρ − ε)δ(α − π)

near the edge of the scatterer and calculate the field E1 at the point (R, ω0) produced
by this source (R is large). The directivity will be equal to the limit

fE(ω0; l) = lim
ε→0,R→∞

k0R

2π
e−ik0RE1(R, ω0). (43)

Now consider the field E2 produced by scattering of the incident plane wave
(7). Note that this plane wave can be approximately replaced by a spherical wave
produced by a point source located far enough. Namely, take the localized source
with the amplitude

j2 =
c0R

ik0

e−ik0RE0 (44)

located at the point (R, ω0) with R large enough. The τ -component of the field E2

produced by this source at the point (l = ξ, ρ = ε, α = π) is equal to

(E2)τ =
2CE(ξ)√

π
ε1/2 + o(ε1/2)

Applying formula (42) and taking the limits ε → 0, R → ∞, we obtain the formula

CE(l) =
πc0

ik2
0

fE(ω0; l) · E0.

Repeating the same procedure, we obtain a more general formula

CE,H =
πc0

ik2
0

fE,H · E0. (45)

So, the coefficients CE,H are now expressed in terms of the directivities of the edge
Green’s functions and the polarization of the incident field.

Substituting (45) into (37) we obtain the strong form of the embedding formula:

f(ω, ω0) =
c2

0

4k3
0(sin θ cos ϕ + sin θ0 cos ϕ0)

×
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∫

Γ

{fE(ω; l) ⊗ fE(ω0; l) + fH(ω; l) ⊗ fH(ω0; l)} dl. (46)

Here we use the symbol ⊗ in the sense on Kronecker product, i.e. in the coordinate
reprsentation

f ij(ω, ω0) =
c2

0

4k3
0(sin θ cos ϕ + sin θ0 cos ϕ0)

×
∫

Γ

{

f i
E(ω; l)f j

E(ω0; l) + f i
H(ω; l)f j

H(ω0; l)
}

dl, (47)

where f i
E,H are the components fE,H in the cooresponding coordinates in V(ω) and

V(ω0).
The usage of the edge Green’s function can be preferable from different point

of views. First, the functions through which we expressed the diffraction coeffi-
cient, namely fE,H(ω; l) depend on three scalar variables θ, ϕ and l while the initial
diffraction coefficient depend on four scalar variables θ, ϕ, θ0 and ϕ0. It means that
numerical tabulation of the new functions gives some gain in memory and time.
Second, fE,H(ω; l) are physically measured values. Such a measurement gives the
information what area is responsible for the maximums of the diffraction coefficient.
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