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Summary
The problem of scattering of a plane wave by two strips lying in one plane and having
ideal boundary conditions is studied. The following exact results are obtained. 1) The
embedding formula is derived. This formula enables to express the far-field diagram,
depending on two variables (the angle of incidence and the angle of scattering) as the
combination of 4 functions depending on one variable. 2) The ordinary differential
equation with respect to the spectral variable is derived for the components of the
far-field diagram. 3) The evolution equations describing the dependance of the far-
field diagram on the parameters of the problem (such as the coordinates of the edges
of the scatterer) are derived. The results listed above are obtained by applying two
independent approaches: the Wiener-Hopf functional equations approach and the
diffraction (Schwarzschild’s) series approach.

1. Introduction
To our knowledge, it was Sommerfeld who first tried to solve the problem of diffraction by
several strips. His method of solving the classical problem of diffraction by a half-plane
(1) seemed to possess the capability of generalization on the case of any problem that can
be reformulated in terms of the Riemann surfaces introduced by Sommerfeld. However,
even the problem of diffraction by a single strip appeared to be very difficult. Altough the
solution of this problem in the form of the Fourier series in Mathieu functions is known since
1908 (2), a significant number of researchers tried to find a rigorous closed-form solution
analogous to Sommerfeld’s solution of a half-line problem. A review of incorrect papers
devoted to the strip problem can be found in (3). The first success was achieved in 1956
(4). Then in (5) a significant progress had been reported, namely the embedding formula
and the evolution equation had been derived. Later, these results were re-derived by using
a completely different technique close to the Wiener-Hopf method (6). The same results
were reformulated using the method of diffraction series in (7)

The history of the several strips problem is less dramatic. Only two papers containing the
rigorous results are known to us (8, 9). In the first of them the series reminiscent of Mathieu
one is constructed. However, the practical benefits of this series are not clear. In the second
one the embedding formula for several strips is constructed in a rather sophisticated manner.
A number of approximate results utilising the modified Wiener-Hopf approach and / or the
ray ideas are known (see e.g. (10, 11)).

The purpose of the current paper is to establish the rigorous analytical properties of the
scattered field for the several strips case, which are analogous to the properties of the field
in the single strip case. These properties (they are formulated as Theorems 1, 2 and 3)
are valid for any geometrical size of the scatterer compared to the wavelength. Altough
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these theorems contain neither the explicit form of the solution, nor the simple recipe for
its calculating, we demonstrate the possibility to use them in a combination with standard
approximate methods.

For our consideration we choose the case of diffraction by two strips, but all results can
be easily generalized to the case of the arbitrary number of the strips.

The structure of the paper is as follows. Sections 2 and 3 are devoted to the functional
equations approach based on Wiener-Hopf method approach. In Section 2 the problem
of diffraction of a plane wave by two strips is formulated and some preliminary steps are
performed. Namely, the set of the auxiliary diffraction problems is introduced, and each
problem is reformulated using the language of the Wiener-Hopf approach, i.e. the unknown
functions in the spectral domain are introduced and the functional equations are derived. In
Section 3 the main rigorous results, namely the embedding formula, the spectral equation
and the evolution equation are obtained. These results are formulated as Theorems 1, 2 and
3, respectively. All theorems are based on the statement of Lemma 1, which is formulated
and proved in the beginning of the section. The content of Section 3 can be considered as
the generalization of the Wiener-Hopf approach.

In Sections 4 and 5 the relation between the new method and the iteration technique is
established. For this purpose in Section 4 we write the solution of the diffraction problem
in the form of the diffraction series, i.e. consider the diffraction process as the sequence of
the simple acts of diffraction by the edges of the scatterer. In Section 5 we again derive
the embedding formula, spectral equation and the evolution equation. These results are
formulated as Theorems 1’, 2’ and 3’. Such parallel structure enables us to justify the main
results from two different points of view. Moreover, when the diffraction series approach is
used, the unknown numerical parameters of the coefficients of the spectral and evolution
equations become expressed in the form of the asymptotic series. This makes it possible to
use these equations for practical calculations.

Section 6 contains an example of calculations utilizing the presented theory.

2. Wiener-Hopf approach. Preliminary steps
2.1 Formulation of diffraction problem with plane wave incidence
Let the 2D Helmholtz equation

∆u + k2
0u = 0 (2.1)

be valid on the (x, y) plane. The cross-sections of two strips coincide with the segments
(a1, a2) and (a3, a4) of the x-axis (see Fig. 1). We assume that the time dependance
everywhere has the form e−iωt. We assume that k0 has a small positive imaginary part
corresponding to small dissipation in the media.

Let the Dirichlet boundary conditions

u = 0 (2.2)

be valid on the strips.
The incident field is a plane wave coming from the upper half-plane

uin = e−ik∗x−i
√

k2
0−k2∗y, (2.3)

where k∗ = k0 cos ψ; ψ is the angle of incidence.
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Fig. 1 Geometry of the problem

Due to the obvious symmetry of the scattered field, a problem with mixed boundary
conditions can be formulated for it:

usc(x,±0) = −e−ik∗x for x ∈ (a1, a2) ∪ (a3, a4), (2.4)

∂

∂y
usc(x, 0) = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). (2.5)

It is clear that one can consider the field only in the half-plane y > 0.
The radiation condition is satisfied at infinity. The scattered field should not contain the

components coming from infinity or growing at infinity. These conditions will be taken into
account when constructing the integral representation of the scattered field.

Meixner’s edge conditions should be taken into account. Here we demand that the total
field should have the asymptotic behaviour near the edges similar to that for the static
problem, namely

u ∼ r1/2, (2.6)

where r is the distance between the observation point and the nearest edge. The normal
derivative on the strips, therefore, behaves like r−1/2.

Without the loss of generality, we suppose that ψ ∈ (0, π/2). This corresponds to Im[k∗] >
0.

2.2 Formulation of auxiliary diffraction problems
We find it necessary to introduce here a set of auxiliary diffraction problems. The solution
of the initial problem can be expressed through the solution of the auxiliary problems via the
embedding formula, while the other results, namely the spectral equation and the evolution
equation look much simpler being formulated for the auxiliary solutions.

Four auxiliary diffraction problems are formulated; their solutions are denoted by
um(x, y), m = 1 . . . 4. These functions are defined as the result of the following limiting
procedure. Let um

ε be solutions of the Helmholtz equations

∆um
ε + k2

0u
m
ε = (π/ε)1/2 δ(x− am − (−1)mε) δ(y) (2.7)

Here ε is a small positive value, δ is the Dirac’s delta-function.
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The functions um
ε satisfy the homogeneous boundary conditions

um
ε = 0 for x ∈ (a1, a2) ∪ (a3, a4), (2.8)

∂

∂y
um

ε = 0 for x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞), x 6= am + (−1)mε, (2.9)

Meixner’s and radiation conditions.
The functions um are defined as the limits of the corresponding functions um

ε :

um = lim
ε→0

um
ε . (2.10)

Fig. 2 To the formulation of the auxiliary diffraction problem

The functions um
ε admit an obvious physical interpretation. They are the diffraction fields

caused by the point source located near one of the edges (see Fig. 2) and having the strength
equal to

√
π/ε. One can check by studying the local behaviour of um

ε that the limits (2.10)
exist and they are non-zero. Moreover, the detailed study provide the following asymptotic
estimations of the functions um near the edges an:

um(ρn, θn) = −δm,n√
π

ρ−1/2
n sin

θn

2
+

2Cm
n√
π

ρ1/2
n sin

θn

2
+ O(ρ3/2

n ), (2.11)

where Cm
n are some unknown coefficients; δm,n is the Kronecker’s delta; (ρn, θn) are the

local cylindrical coordinates introduced in Fig. 3.
Note that the expansions for um contain the terms not obeying Meixner’s condition. The

reason for this is, obviously, the presence of the source near the corresponding edge.
There is a possibility to introduce the auxiliary solutions formally without the limiting

procedure. Namely, one can seek um as the functions satisfying the homogeneous
Helmholtz equation, homogeneous boundary conditions, radiation condition, and having
the asymptotic behaviour of the form (2.11) at the edges.



diffraction of a plane wave by two ideal strips 5

Fig. 3 Local polar coordinates

2.3 Unknown functions in spectral domain. Derivation of functional equations

Introduce the following functions:

U0(k) =

a1∫

−∞
usc(x, 0)eikxdx− iei(k−k∗)a1

k − k∗
,

U1(k) =
i√

k2
0 − k2

a2∫

a1

∂usc

∂y
(x, +0)eikxdx.

U2(k) =

a3∫

a2

usc(x, 0)eikxdx +
iei(k−k∗)a2

k − k∗
− iei(k−k∗)a3

k − k∗
, (2.12)

U3(k) =
i√

k2
0 − k2

a4∫

a3

∂usc

∂y
(x, +0)eikxdx.

U4(k) =

∞∫

a4

usc(x, 0)eikxdx +
iei(k−k∗)a4

k − k∗
.

Taking into account the boundary conditions (2.4) and (2.5), we conclude that

U0(k) + U2(k) + U4(k) =

∞∫

−∞
usc(x, 0)eikxdx, (2.13)

−i
√

k2
0 − k2 (U1(k) + U3(k)) =

∞∫

−∞

∂

∂y
usc(x, +0)eikxdx. (2.14)

Note that due to the radiation condition, the Fourier images of the field on the x-axis and
its normal derivative are connected via the relation

i
√

k2
0 − k2

∞∫

−∞
usc(x, 0)eikxdx =

∞∫

−∞

∂

∂y
usc(x, +0)eikxdx. (2.15)
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Here the branch of the square root is chosen as follows. The square root is equal to k0 at
k = 0, and it is continuous along the contour passing below the branch point k = k0 and
above the point k = −k0.

Substituting (2.13) and (2.14) into (2.15), one can write the following functional equation:

U0(k) + U1(k) + U2(k) + U3(k) + U4(k) = 0 (2.16)

for all real k.
The functional equation should be considered together with the restrictions imposed on

the behaviour of the unknown functions in the complex plane k. As it follows from the
definition (2.12), the spectral functions satisfy the conditions:

• the function U0 is regular in the lower half-plane k;
• the function U4 is regular in the upper half-plane with the exception of the point k = k∗,

where there is a pole with the known residue;
• the functions U2,

√
k2
0 − k2U1,

√
k2
0 − k2U3 are entire on the whole k plane.

Note that k0 belongs to the upper half-plane and −k0 belongs to the lower half-plane. It
means that the properties mentioned above bring some useful information concerning the
behaviour of the unknown functions at the branch points.

Perform the estimation of growth of the unknown functions at infinity. Let the following
estimations of the total field near the edges be valid:

u(ρm, θm) =
2√
π

[
Cmρ1/2

m sin
θm

2
+ O(ρ3/2

m )
]

, m = 1 . . . 4, (2.17)

where Cm are some unknown constants; ρm and θm are the local polar coordinates
introduced in Fig. 3. The asymptotics (2.17) are taken from the exact solution of the
Sommerfeld half-line problem.

Using (2.17) one can estimate the growth of the unknown functions Um. Namely, the
asymptotics for the upper half-plane (0 < Arg[k] < π), |k| → ∞ are the following:

U1(k) = eia1k
[
iC1(−ik)−1/2(k2

0 − k2)−1/2 + O(|k|−5/2)
]
,

U2(k) = eia2k
[
C2(−ik)−3/2 + O(|k|−5/2)

]
,

(2.18)
U3(k) = eia3k

[
iC3(−ik)−1/2(k2

0 − k2)−1/2 + O(|k|−5/2)
]
,

U4(k) = eia4k
[
C4(−ik)−3/2 + O(|k|−5/2)

]
.

The asymptotics for the lower half-plane (−π < Arg[k] < 0), |k| → ∞ are the following:

U0(k) = eia1k
[
C1(ik)−3/2 + O(|k|−5/2)

]
,

U1(k) = eia2k
[
iC2(ik)−1/2(k2

0 − k2)−1/2 + O(|k|−5/2)
]
,

(2.19)
U2(k) = eia3k

[
C3(ik)−3/2 + O(|k|−5/2)

]
,

U3(k) = eia4k
[
iC4(ik)−1/2(k2

0 − k2)−1/2 + O(|k|−5/2)
]
.
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Here and below we assume that the function kα is regular on the plane k cut along the
real negative half-axis. If α is real, then the values of the function for real positive k are
real positive.

This fact is not easy to prove, but the equation (2.16) and the analytic restrictions listed
above are enough to determine the unknown functions. We shall call the set of the functional
equation, conditions of analyticity and the estimations of growth a functional problem.

Formulate also the functional problems for the auxiliary diffraction problems. For each
m = 1 . . . 4 introduce the unknown spectral functions

Um
0 (k) =

a1∫

−∞
um(x, 0)eikxdx,

Um
1 (k) =

i√
k2
0 − k2

a2∫

a1

∂um

∂y
(x, +0)eikxdx,

Um
2 (k) =

a3∫

a2

um(x, 0)eikxdx,

Um
3 (k) =

i√
k2
0 − k2

a4∫

a3

∂um

∂y
(x, +0)eikxdx,

Um
4 (k) =

∞∫

a4

um(x, 0)eikxdx,

where the divergent integrals are implied to be properly regularized.
The following functional equations similar to (2.16) are valid for each m :

Um
0 (k) + Um

1 (k) + Um
2 (k) + Um

3 (k) + Um
4 (k) = 0. (2.20)

Conditions of analyticity similar to those formulated in the previous subsection are valid:

• the functions Um
0 are regular in the lower half-plane;

• the functions Um
4 are regular in the upper half-plane;

• the functions Um
2 ,

√
k2
0 − k2Um

1 ,
√

k2
0 − k2Um

3 are entire on the whole k plane.

Note that there is no singularity at k = k∗.
Using (2.11), derive a set of asymptotic estimations for the upper half-plane (0 < Arg[k] <

π):

Um
1 (k) = ieia1k(k2

0 − k2)−1/2
[
δm,1(−ik)1/2 + Cm

1 (−ik)−1/2 + O(k−3/2)
]
,

Um
2 (k) = eia2k

[
−δm,2(−ik)−1/2 + Cm

2 (−ik)−3/2 + O(k−5/2)
]
,

(2.21)
Um

3 (k) = ieia3k(k2
0 − k2)−1/2

[
δm,3(−ik)1/2 + Cm

3 (−ik)−1/2 + O(k−3/2)
]
,

Um
4 (k) = eia4k

[
−δm,4(−ik)−1/2 + Cm

4 (−ik)−3/2 + O(k−5/2)
]
;
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and for the lower half-plane (−π < Arg[k] < 0):

Um
0 (k) = eia1k

[
−δm,1(ik)−1/2 + Cm

1 (ik)−3/2 + O(k−5/2)
]
,

Um
1 (k) = ieia2k(k2

0 − k2)−1/2
[
δm,2(ik)1/2 + Cm

2 (ik)−1/2 + O(k−3/2)
]
,

(2.22)
Um

2 (k) = eia3k
[
−δm,3(ik)−1/2 + Cm

3 (ik)−3/2 + O(k−5/2)
]
,

Um
3 (k) = ieia4k(k2

0 − k2)−1/2
[
δm,4(ik)1/2 + Cm

4 (ik)−1/2 + O(k−3/2)
]
.

The functional equations (2.20), analiticity retrictions and the estimations of growth form
the set of four functional problems for the auxiliary spectral functions Um

n .
Using the inverse Fourier transform and taking into account (2.14) one can reconstruct

the scattered field in the half-plane y > 0:

usc(x, y) = − 1
2π

∫ ∞

−∞
(U1(k) + U3(k))eikx+i

√
k2
0−k2ydk. (2.23)

The spectral functions are naturally connected with the directivities of wave fields.
Introduce the functions

S(k, k∗) ≡
√

k2
0 − k2 (U1(k) + U3(k)) , Sm(k) ≡

√
k2
0 − k2 (Um

1 (k) + Um
3 (k)) (2.24)

Using a standard technique, one can prove that the leading term of the wave fields in a
far-field zone can be represented as cylindrical waves:

usc(R, ϕ) ≈ −eik0R−iπ/4

√
2πk0R

S(−k0 cosϕ, k∗), um(R, ϕ) ≈ −eik0R−iπ/4

√
2πk0R

S(−k0 cos ϕ),

(2.25)
where R is the (large) distance between the origin and the observation point; ϕ is the
observation angle defined in Fig. 1.

3. Main theorems for functional problems

3.1 A property of Wronsky-type determinants

Lemma 1. Let the functions V m
n (k), m = 1 . . . 4, n = 0 . . . 4, of the complex variable k have

the following properties:

1.all functions are analytic on the real axis;
2.the functional equations

V m
0 (k) + V m

1 (k) + V m
2 (k) + V m

3 (k) + V m
4 (k) = 0 (3.1)

are valid for all real k and m = 1 . . . 4;
3.the functions V m

0 are regular in the lower half-plane; the functions V m
4 are regular in

the upper half-plane; the functions V m
2 ,

√
k2
0 − k2V m

1 ,
√

k2
0 − k2V m

3 are entire on the
whole k plane.
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4.the following asymptotic estimations are valid in the upper half-plane:

V m
1 (k) = ieia1k(k2

0 − k2)−1/2
[
Em

1 (−ik)1/2 + O(k−1/2)
]
,

V m
2 (k) = eia2k

[
−Em

2 (−ik)−1/2 + O(k−3/2)
]
,

(3.2)
V m

3 (k) = ieia3k(k2
0 − k2)−1/2

[
Em

3 (−ik)1/2 + O(k−1/2)
]
,

V m
4 (k) = eia4k

[
−Am

4 (−ik)−1/2 + O(k−3/2)
]
,

and the following asymptotic estimations are valid in the lower half-plane:

V m
0 (k) = eia1k

[
−Em

1 (ik)−1/2 + O(k−3/2)
]
,

V m
1 (k) = ieia2k(k2

0 − k2)−1/2
[
Em

2 (ik)1/2 + O(k−1/2)
]
,

(3.3)
V m

2 (k) = eia3k
[
−Em

3 (ik)−1/2 + O(k−3/2)
]
,

V m
3 (k) = ieia4k(k2

0 − k2)−1/2
[
Em

4 (ik)1/2 + O(k−1/2)
]

for some constants Em
n .

Then ∣∣∣∣∣∣∣∣

V 1
1 V 2

1 V 3
1 V 4

1

V 1
2 V 2

2 V 3
2 V 4

2

V 1
3 V 2

3 V 3
3 V 4

3

V 1
4 V 2

4 V 3
4 V 4

4

∣∣∣∣∣∣∣∣
=

γ(k)
k2 − k2

0

∣∣∣∣∣∣∣∣

E1
1 E2

1 E3
1 E4

1

E1
2 E2

2 E3
2 E4

2

E1
3 E2

3 E3
3 E4

3

E1
4 E2

4 E3
4 E4

4

∣∣∣∣∣∣∣∣
, (3.4)

where γ(k) = exp{ik(a1 + a2 + a3 + a4)}.
Proof. Denote the determinants in the left and in the right of (3.4) by the symbols |V (k)|
and |E|, respectively. Study the properties of the determinant |V (k)| in the upper half-
plane. Multiply the raws of the determinant by the functions e−ia1k(k2

0 − k2)1/2, e−ia2k,
e−ia3k(k2

0 − k2)1/2, e−ia4k, respectively. As the result, we obtain the determinant γ−1(k2
0 −

k2)|V (k)|. All its elements are regular functions in the upper half-plane. The determinant
grows no faster than a constant at infinity there. This constant can be found by studying
the asymptotics of the elements:

γ−1(k2
0 − k2)|V (k)| ∼ −|E|+ O(k−1) as |k| → ∞. (3.5)

Now study the behaviour of |V (k)| in the lower half-plane. Using the functional equations
(3.1) and the general properties of the determinants, we can write |V (k)| in the form

|V (k)| =

∣∣∣∣∣∣∣∣

V 1
0 V 2

0 V 3
0 V 4

0

V 1
1 V 2

1 V 3
1 V 4

1

V 1
2 V 2

2 V 3
2 V 4

2

V 1
3 V 2

3 V 3
3 V 4

3

∣∣∣∣∣∣∣∣
. (3.6)

This representation can be continued into the lower half-plane. Multiply the raws of
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the determinant by the functions e−ia1k, e−ia2k(k2
0 − k2)1/2, e−ia3k, e−ia4k(k2

0 − k2)1/2,
respectively. Note that all elements of the resulting determinant are regular in the lower
half-plane and the determinant grows no faster than a constant there.

Thus, the function γ−1(k2
0 − k2)|V (k)| is analytic on the whole k-plane. Moreover, the

estimation (3.5) is valid both in the lower and in the upper half-plane. The identity (3.4)
follows then from the Liouville’s theorem ¥

The determinant |V (k)| can be called a Wronsky-type determinant, since the properties
of the functions V m

n are reminiscent of the properties of solutions for ordinary differential
equations.

Instead of considering the set of 20 functions V m
n in Lemma 1, one can consider 16

functions, say V m
n for m, n = 1 . . . 4, and define the rest 4 functions V m

0 using the functional
equations (3.1). In this case it is possible to say that a determinant itself satisfies the
conditions of Lemma 1. Note also that the conditions of Lemma 1 can be checked separately
for each column of a determinant.

3.2 Embedding formula

Theorem 1. The following embedding formula is valid:

Un(k, k∗) =

√
k2
0 − k2∗

k − k∗

4∑
m=1

(−1)m−1Um
n (k) (Um

1 (−k∗) + Um
3 (−k∗)) , (3.7)

for n = 0 . . . 4 .

Corollary. Using (3.7) and (2.25) one can write the embedding formula for the
directivities:

S(k, k∗) =
1

k − k∗

4∑
m=1

(−1)m−1Sm(−k∗)Sm(k). (3.8)

Proof. Let us find the functions Qm(k, k∗), such that

Un(k, k∗) =
4∑

m=1

Qm(k, k∗)Um
n (k) for n = 1 . . . 4. (3.9)

Note that due to the functional equations (2.16) and (2.20), a similar relation should be
valid for the rest spectral functions:

U0(k, k∗) =
4∑

m=1

Qm(k, k∗)Um
0 (k). (3.10)

The equations (3.9) can be solved as a system of linear algebraic equations with respect
to Qm using the Cramer’s rule:

Q1 =
D1

D
, Q2 =

D2

D
, Q3 =

D3

D
, Q4 =

D4

D
, (3.11)
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where D1 . . . D4 and D are Wronsky-type determinants:

D =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U3
1 U4

1

U1
2 U2

2 U3
2 U4

2

U1
3 U2

3 U3
3 U4

3

U1
4 U2

4 U3
4 U4

4

∣∣∣∣∣∣∣∣
, D1 =

∣∣∣∣∣∣∣∣

U1 U2
1 U3

1 U4
1

U2 U2
2 U3

2 U4
2

U3 U2
3 U3

3 U4
3

U4 U2
4 U3

4 U4
4

∣∣∣∣∣∣∣∣
, D2 =

∣∣∣∣∣∣∣∣

U1
1 U1 U3

1 U4
1

U1
2 U2 U3

2 U4
2

U1
3 U3 U3

3 U4
3

U1
4 U4 U3

4 U4
4

∣∣∣∣∣∣∣∣
,

D3 =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U1 U4
1

U1
2 U2

2 U2 U4
2

U1
3 U2

3 U3 U4
3

U1
4 U2

4 U4 U4
4

∣∣∣∣∣∣∣∣
, D4 =

∣∣∣∣∣∣∣∣

U1
1 U2

1 U3
1 U1

U1
2 U2

2 U3
2 U2

U1
3 U2

3 U3
3 U3

U1
4 U2

4 U3
4 U4

∣∣∣∣∣∣∣∣
. (3.12)

Fix the variable k∗ and consider determinants D, D1 . . . D4 as the functions of the variable
k. The determinant D satisfies the conditions of Lemma 1. Studying the asymptotics of its
elements, we conclude that

D(k) =
γ(k)

k2 − k2
0

. (3.13)

The determinants Dm do not satisfy the conditions of Lemma 1, since their elements have
simple poles at k = k∗. Multiply the m-th column of the determinant Dm by (k− k∗). The
resulting determinant satisfies the conditions of Lemma 1. Studying the asymptotics of its
elements, we conclude that

Dm(k) =
i(−1)m−1Cmγ(k)
(k2 − k2

0)(k − k∗)
m = 1 . . . 4. (3.14)

(the constants Cm are taken from (2.18)), and therefore

Un(k, k∗) =
i

k − k∗

4∑
m=1

(−1)m−1Cm(k∗)Um
n (k), , n = 0 . . . 4, (3.15)

This equation is the weak form of the embedding formula, since the functions Cm(k∗) remain
unknown.

Express the values Cm in terms of the auxiliary functions Um
n . Use the reciprocity

principle for this. Let the scatterer be illuminated by a point source of the unit strength
having the polar coordinates R, ψ (see Fig. 4a). The value R is large enough; the source is
assumed to be located at the far-field zone. In this case the scattered field is almost equal
to the field generated by plane-wave incidence. The asymptotic of the total field at the
observation point located near the edge is the following:

u(ρ, θ) ≈ − iCm
√

ρ eik0R−iπ/4 sin θ/2
π
√

2k0R
. (3.16)

Consider the inverse situation, i.e. the source is located near the edge and the observation
point is far from the scatterer (see Fig. 4b). The approximation for the field can be found
using the second Green’s formula. We omit the calculations (they are rather standard) and
write the final result:

u(R, ψ) ≈ −
√

ε eik0R−iπ/4

π
√

2k0R

√
k2
0 − k2∗(U

m
1 (−k∗) + Um

3 (−k∗)), (3.17)
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Fig. 4 To the application of the reciprocity principle

where again k∗ = k0 cos ψ.
The reciprocity theorem states that the formulae (3.16) and (3.17) with θ = π and ρ = ε

should give the same values. Taking the limit R →∞, ε → 0 we obtain the exact formula

Cm = −i
√

k2
0 − k2∗(U

m
1 (−k∗) + Um

3 (−k∗)). (3.18)

Substituting (3.18) into (3.15), we obtain the strong form of the embedding formula (3.7)
¥

It is obvious how the formula (3.7) can be generalized on the case of more than 2
complanar strips: the summation should be performed over all edges of the system.

According to the embedding formula, one needs to find the auxiliary functions depending
on a single variable k, to have the possibility to calculate the far-field diagram for each pair
(k, k∗).

Here we obtained the formula (3.18) using the reciprocity principle. The same formula
can be derived using only the technique of Wronsky-type determinants. However, this
consideration is rather sophisticated and we don’t describe it here.

Earlier the embedding formula was obtained in (5) for a single strip and in (9) for
several strips, so this result is basically not new. The main difference between the forms of
embedding formulae is the choice of the auxiliary functions (or basis). All of them can be
transformed one into another by linear transformations. The set of the auxiliary functions
chosen in the present paper appears to be very convenient when the spectral equations are
derived. All other sets lead to more complicated coefficients.
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Compare our result with the one obtained in (9). Introduce the functions

H(k, k∗) = (k + k∗)S(k,−k∗),

which are proportional to those introduced in (9). The basis taken in (9) for the embedding
formula was composed of the directivities for 4 different “reference” angles of incidence.
Namely, let k1, k2, k3, k4 be the set of arbitrary reference angles not equal to each other.
Then, as it is follows from the embedding formula (3.8),

H(k, k∗) =
4∑

j=1

λj(k∗)H(k, kj), (3.19)

where λm are defined from the equations

Sm(k∗) =
4∑

j=1

λj(k∗)Sm(kj) (3.20)

The formula (3.19) coincides with (3.49) from (9) up to the change H(k, k∗) = H(k∗, k),
which follows from the reciprocity principle. The equations for λj were formulated in (9)
in a different manner:

H(km, k∗) =
4∑

j=1

λj(k∗)H(km, kj).

However, this system follows directly from (3.19) and can be an alternative to (3.20).

3.3 Spectral equation for the auxiliary functions
The embedding formula expresses the unknown spectral functions Un in terms of the
auxiliary functions Um

n . Unfortunately, there is no compact representation for Um
n .

However, in this section we prove that these functions obey an ordinary differential equation
(ODE) with respect to the variable k; the coefficients of this equation are rather simple
rational functions of k. Thus, the auxiliary functions Um

n (k) can be found numerically by
solving the corresponding equation with appropriate initial conditions.

Introduce the matrix notation for the auxiliary functions:

U(k) =




U1
1 U1

2 U1
3 U1

4

U2
1 U2

2 U2
3 U2

4

U3
1 U3

2 U3
3 U3

4

U4
1 U4

2 U4
3 U4

4


 .

Denote the differentiation with respect to k by prime.

Theorem 2. The matrix U obeys the following spectral equation:

U′ = KU. (3.21)

The matrix of the coefficients K has the form

K(k) =




ia1 0 0 0
0 ia2 0 0
0 0 ia3 0
0 0 0 ia4


 +

1
k − k0

K+ +
1

k + k0
K−, (3.22)
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where K+ and K− are some matrices not depending on k.

Proof. Consider formally the equation (3.21) as a system of linear algebraic equations with
respect to the elements Km,n of the matrix K. Solve this system formally using the Cramer’s
rule. The result is

Km,n = Dm,n(k)/D(k), (3.23)

where the determinant D is given by (3.12) and each determinant Dm,n is obtained by
replacing the n-th column of D by the derivative of the m-th column. For example,

D2,3 =

∣∣∣∣∣∣∣∣

U1
1 U2

1 (U2
1 )′ U4

1

U1
2 U2

2 (U2
2 )′ U4

2

U1
3 U2

3 (U2
3 )′ U4

3

U1
4 U2

4 (U2
4 )′ U4

4

∣∣∣∣∣∣∣∣
.

All determinants Dm,n belong to the Wronsky type, but the conditions of Lemma 1 are
not fulfilled for the n-th column, since its elements have the singularities at the points ±k0

stronger than that is allowed by conditions of Lemma 1. However, this can be overcome
by a simple trick. Denote the columns of the determinant D by dm, m = 1 . . . 4. The n-th
column of the determinant Dm,n has the form d′m. Construct the determinant D∗

m,n, whose
n-th column has the form

(k2 − k2
0)d

′
m − (iamk2 − k/2)dm −

4∑

l=1

(−1)l−1(am − al)Cm
l k dl

and 3 other columns are the same as of Dm,n. By studying the singularities and the
behaviour at infinity one can check that the new column satisfies the conditions of Lemma 1,
therefore

D∗
m,n = const×D(k).

On the other hand, by construction

D∗
m,n = (k2 − k2

0)Dm,n − [(iamk2 − k/2)δm,n + (−1)n−1(am − an)Cm
n k]D.

Comparing these two forms and substituting the result into (3.23), we obtain the formula
(3.22) with the additional relation

K+
m,n + K−

m,n = −δm,n

2
+ (−1)n−1(am − an)Cm

n , (3.24)

where K±
m,n are the elements of the matrices K± ¥

The coefficients of the equation (3.21) are known up to 32 constant parameters. Using the
analyticity and growth restrictions for the functions Um

n , one can formulate the eigenvalue
problem with global monodromy restrictions for finding the unknown constants. One can
show that the number of links is equal to the number of unknown constants (a similar result
was obtained in (6)). The analyticity and growth restrictions can be used to specify the
functions Um

n among the solutions of the equation (3.21). However, this method seems to
be too complicated for practical calculations. In (7) a simple and effective approximate
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technique based on the diffraction series is developed for a single strip problem. A similar
technique will be developed for the case of several strips for practical calculations in
Sections 4,5.

Equation (3.21) with the coefficient (3.22) is the most important equation related to the
problem of diffraction by several strips. Two main reasons exist for saying that this equation
is a generalization of the Wiener-Hopf method. First, we found the functions, to which the
Liouville theorem is applicable. These functions are the Wronsky-type determinants D and
Dm,n. The application of the Liouville theorem is the key point of the Wiener-Hopf method.
Second, the method developed here can be applied to the classical Sommerfeld problem of
diffraction by an ideal half-plane. It leads to a degenerated ODE of order 1. The coefficient
K in this case is equal to the logarithmic derivative of the unknown spectral function. The
solution coincides with that obtained by the Wiener-Hopf method.

3.4 Evolution equations
Theorem 3. The following evolution equations describe the dependance of Um

n on the edge
coordinates am, m = 1 . . . 4:

∂

∂aj
U = AjU, (3.25)

where the elements of the matrices Aj have the form

Aj
m,n(k) = ikδj,mδm,n + (−1)n−1Cm

n (δj,m − δj,n). (3.26)

Proof. The equations (3.25) can be formally solved with respect to the matrices Aj . Each
element Aj

m,n of the matrix Aj can be represented as a ratio of the determinants

Aj
m,n = Dj

m,n(k)/D(k),

where Dj
m,n is the determinant obtained from D by replacing the n-th column by the

derivative of the m-th column with respect to aj . For example,

Dj
m,n =

∣∣∣∣∣∣∣∣

U1
1 U2

1 (U2
1 ),aj U4

1

U1
2 U2

2 (U2
2 ),aj U4

2

U1
3 U2

3 (U2
3 ),aj U4

3

U1
4 U2

4 (U2
4 ),aj U4

4

∣∣∣∣∣∣∣∣
.

The column (dm),aj can violate the conditions of Lemma 1 due to the growth at infinity.
Replace the n-th column of Dj

m,n by the column

(dm),aj − ikδj,mδm,ndm.

The resulting determinant is equal to

Dj
m,n − ikδj,mδm,nD

and it satisfies the conditions of Lemma 1. Studying the leading terms of the asymptotics
of its elements at infinity, we obtain the relation (3.26) ¥
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Corollary. The following nonlinear differential equations are valid for K±
m,n:

∂K±
m,n

∂aj
= ±ik0K

±
m,n(δm,j − δn,j) +

(K+
m,j + K−

m,j)K
±
j,n

aj − am
+

(K+
j,n + K−

j,n)K±
m,j

an − aj
+

∑

l 6=j

(K+
j,l + K−

j,l)K
±
l,n

aj − al
+

∑

l 6=j

(K+
l,j + K−

l,j)K
±
m,l

al − aj
. (3.27)

Here we assume that the second term in the r.-h.s. of (3.27) is equal to zero if m = j, and
the third term is equal to zero if n = j.

Proof. Differentiate U with respect to k and aj in two different ways:

∂2U
∂k∂aj

=
(

∂K
∂aj

+ KAj

)
U =

∂2U
∂aj∂k

=
(

∂Aj

∂k
+ AjK

)
U.

Multiply this equation by U−1. Note that the determinant of this matrix is not zero almost
everywhere. This yields

∂K
∂aj

=
∂Aj

∂k
+ [Aj ,K]. (3.28)

Note that using the relation (3.24) the element of the matrices Aj can be expressed
trought the elements of K±:

Aj
m,n(k) = ikδj,mδm,n +

(K+
m,n + K−

m,n)(δj,n − δj,m)
an − am

, (3.29)

where the second term is equal to zero if m = n.
Substitute (3.29) into (3.28). Expand the result into the partial fraction, i.e. rewrite

(3.28) in the form

(. . . )k1 + (. . . )k0 + (. . . )(k − k0)−1 + (. . . )(k + k0)−1 = 0,

where the expressions in the parentheses do not depend k (in fact, they are some ugly
expressions containing am and K±

m,n). Each expression should be equal to zero separately.
One can check directly that the first two terms are equal to zero identically. The second
two terms yield the equation (3.27) ¥

4. Diffraction series approach. Preliminary steps
The theorems proved in Section 3 are difficult to be used for finding the diffraction field
because the coefficients of the spectral and evolution equations contain unknown parameters.
These paprameters can be found by solving a complicated eigenvalue problem. Here we
develop another technique enabling us to derive the coefficients in the form of the asymptotic
series. We use the diffraction (or Schwarzschild’s) series for this.

In this section we assume that k0 has a positive imaginary part enough to establish the
convergence of all series below. It is not an unusual procedure in the diffraction theory to
prove some theorem for the imaginary k0 and then to continue these results analytically
onto the real axis. Moreover, the convergence of the most important series was established
by Schwarzschild even for real k0.

We remind that 0 < ψ < π/2 and Im[k∗] > 0.
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4.1 Solution of the diffraction problem in terms of the diffraction series. Diffraction
indices and diffraction terms

Return to the diffraction problem formulated in Subsection 2.1. Consider the diffraction
process as a series of successive acts of diffraction by the edges of the structure. Each act
of diffraction is described by the Sommerfeld theory, i.e. it is treated as the diffraction by
an ideal half-line. We assume that two successive acts of diffraction can occur only at the
adjacent edges, i.e. the points am and an, where n = m± 1.

Introduce the diffraction indices denoting the sequences of diffraction acts. Let a
diffraction index be a sequence of symbols from the set {1, 2, 3, 4}, in which the difference
between adjacent symbols is equal to ±1. The index 1232123 is valid, and the index 124 is
invalid. The first symbol from the left corresponds to the first act of diffraction, the last
symbol corresponds to the last act. The main parameter of a diffraction index is its order ,
namely, its length minus 1. For example, the order of the index 1234 is equal to 3. We shall
denote the diffraction indexes by small Greek letters, and the elements of the indexes (the
symbols from the set {1, 2, 3, 4}) by small Latin letters.

Represent the scattered field usc(x, y) for y > 0 in the form

usc = u4 + u43 + u432 + u434 + . . . (4.1)

where the diffraction terms uα(x, y) obey the Helmholtz equation, Sommerfeld radiation
conditions, Meixner edge conditions (i.e. the energy is integrable near the edges) and some
boundary conditions.

The boundary conditions are connected with the recursive procedure of calculation of
the diffraction terms. The first term having the order zero is specified by the following
boundary conditions:

u4(x, 0) = −e−ik∗x for x < a4,
∂u4

∂y
(x, 0) = 0 for x > a4, (4.2)

For each other term having the index α define the preceding term, the index for which is
obtained by truncating α by one symbol from the right. The diffraction terms are calculated
recursively; each diffraction term is the solution of a correspondent Sommerfeld half-line
problem. The boundary conditions for each term are inhomogeneous and the right-hand
side is presented by either the field or its normal derivative of the preceding term.

Note that there are 6 types of Sommerfeld problems, since here we distinguish the cases
when the incidence wave approaches the edge from right and from left, e.g., the recursive
relations, say, for the terms uα32 and uα12 have different form.

There is only one type of the Sommerfeld problem related to edge a1. Recursive boundary
conditions are the following:

uα1(x, 0) = 0 for x > a1,
∂uα1

∂y
(x, 0) = −∂uα

∂y
(x, 0) for x < a1.

There are two cases of diffraction by the edge a2. Namely, the incident wave can come from
the edge a1:

uα12(x, 0) = 0 for x < a2,
∂uα12

∂y
(x, 0) = −∂uα1

∂y
(x, 0) for x > a2
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or from the edge a3:

uα32(x, 0) = −uα3(x, 0) for x < a2,
∂uα32

∂y
(x, 0) = 0 for x > a2.

Analogously,

uα23(x, 0) = −uα2(x, 0) for x > a3,
∂uα23

∂y
(x, 0) = 0 for x < a3,

uα43(x, 0) = 0 for x > a3,
∂uα43

∂y
(x, 0) = −∂uα4

∂y
(x, 0) for x < a3,

uα4(x, 0) = 0 for x < a4,
∂uα4

∂y
(x, 0) = −∂uα

∂y
(x, 0) for x > a2.

Everywhere α denotes the preceding symbols of the corresponding diffraction index.
One can check directly that the sum of all diffraction terms specified by the boundary

conditions listed above satisfies the boundary conditions (2.4), (2.5).

4.2 Explicit formulae for diffraction terms
Use the Wiener-Hopf technique to find the diffraction terms. Introduce the following
notations for the spectra of the diffraction terms:

uα(x, y) =
1
2π

∞∫

−∞
Wα(k)e−ikx+i

√
k2
0−k2ydk. (4.3)

Comparing (4.3) with (4.1), we conclude that the angular spectrum of the scattered field
is the sum of all terms Wα with all valid diffraction indexes α starting with 4. We shall
denote this sum by W4−:

W4− = W4 + W43 + W432 + W434 + . . .

Thus,

usc =
1
2π

∞∫

−∞
W4−(k)e−ikx+i

√
k2
0−k2ydk (4.4)

Note that
W4−(k) = −(U1(k) + U3(k)),

where U1 and U3 are the spectral functions introduced in Section 3. The dependance of
W4− on k∗ is implied. In some places below we shall indicate this dependence explicitly.

Using the standard procedure of the Wiener-Hopf method (12), we can represent the
diffraction terms in recursive form:

W4(k) =
i

(k − k∗)
β4(k)
β4(k∗)

, (4.5)

Wαm = −βmFε[β−1
m Wα], (4.6)
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where

β1(k) =
√

i eia1k

√
k0 − k

, β2(k) = −
√

i eia2k

√
k0 + k

, β3(k) =
√

i eia3k

√
k0 − k

, β4(k) = −
√

i eia4k

√
k0 + k

; (4.7)

Fε is either F+ or F−; the operators F+ and F− perform the additive decomposition of a
function into the terms, regular and decaying in the upper and lower half-plane respectively:

F+[V ](k) =
1

2πi

∞∫

−∞

V (τ)
τ − k

dτ for Im[k] > 0,

(4.8)

F−[V ](k) = − 1
2πi

∞∫

−∞

V (τ)
τ − k

dτ for Im[k] < 0;

the symbol ε here and below stands for “+” or “−”. The sign “+” is chosen if m is equal
to the last symbol of α plus 1, and the sign “−” is chosen if m is equal to the last symbol
of α minus 1.

One can note that the expressions for the diffraction terms are rather complicated. The
term of order n (i.e. with the index containing n + 1 symbol) is represented by n integrals
with Cauchy’s kernel.

4.3 Auxiliary terms Gα. Connections with the spectral functions introduced is Section 3
Introduce a set of auxiliary functions Gα, depending only on the variable k and having the
diffraction-styled indexes. The auxiliary functions are defined by the following recursive
relations:

Gm(k) = βm(k), (4.9)

Gαm = βmFε

[
β−1

m Gα

]
. (4.10)

one can note that the definition of functions G is close to (4.6), the exception is the first
term and the sign.

Establish the connections between the spectral functions introduced above and in
Section 2. Compare the boundary conditions for the terms uα with the definition of the
functions Un. One can easily prove that

U0 = W4−1, U1 = −(W4−1 + W4−2), U2 = W4−2 + W4−3,

U3 = −(W4−3 + W4−4), U4 = W4−4, (4.11)

where Wm−n is the infinite sum sum of all diffraction terms Wα with α starting with m
and ending with n. Obviously,

W4− = W4−1 + W4−2 + W4−3 + W4−4.

Analogously, taking into account the edge behaviour of the functions um and comparing
it with the definition of Gα, one concludes that

Um
0 = −Gm−1, Um

1 = Gm−1 −Gm−2, Um
2 = Gm−2 −Gm−3,

Um
3 = Gm−3 −Gm−4, Um

4 = Gm−4, (4.12)

where Gm−n is the sum of all values Gα with the index α starting with m and ending with
n.
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5. Main results for diffraction series
5.1 Formulae for transforming diffraction terms and series
Lemma 2. Let the function V (k) decay as |k| → ∞ for real k.
a. For any ξ not lying on the real axis

F±

[
V (τ)
τ − ξ

]
(k) =

F±[V ](k)
k − ξ

+
F±[V, ξ]
k − ξ

, (5.1)

where the functionals F± are defined as follows:

F±[V, ξ] = ∓ 1
2πi

∞∫

−∞

V (τ)
τ − ξ

dτ. (5.2)

b. If all integrals below exist, then

F±[τV (τ)](k) = kF±[V ](k) + C±[V ], (5.3)

where

C±[V ] = ± 1
2πi

∞∫

−∞
V (τ)dτ.

Formula (a) follows from the obvious relation

1
(τ − ξ)(τ − k)

=
1

k − ξ

[
1

τ − k
− 1

τ − ξ

]
;

formula (b) follows from the relation

τ

τ − k
=

k

τ − k
+ 1.

One can note that the values F±[V (k), ξ] and C± do not depend on k. The functional C±
is related to the asymptotics of the function F±[V ]. Namely,

C±[V ] = lim
|k|→∞


∓ k

2πi

∞∫

−∞

V (τ)
τ − k

dτ,




i.e. if F+[V ](k) or F−[V ](k) has the asymptotics bk−1 + o(k−1) at infinity in the upper or
lower half plane, respectively, then C±[V ] = −b. The formula (5.3) can be treated as a
particular case of (5.1) with ξ = ∞.

We remind also the elementary properties of the operators F±:

V = F+[V ] + F−[V ] (5.4)

and

(F±[V ])′ = F±[V ′],
(
′ =

d

dk

)
. (5.5)
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The property (5.4) follows from the Cauchi’s theorem, and the formula (5.5) can be proved
by integration by parts.

We are going to formulate also the property of the sums, whose form is typical for the
series below. Introduce the following notations: Let s(α, n) be the diffraction index that
consists of the first n+1 symbols of α; t(α, n) be the diffraction index consisting of the last
n + 1 symbols of α; N(α) be the order of the index α.

Lemma 3. Let some values dα, hα and zα have diffraction-style indices. Let zm−n, dm−n,
hm−n denote the series of values zα (dα, hα, respectively) over all diffraction indices α
starting with m and ending with n. Let the following formula be valid for each α:

zα =
n∑

m=0

ds(α,m)ht(α,n−m), n = N(α). (5.6)

Then

zm−n =
4∑

j=1

dm−jhj−n (5.7)

if all series are absolutely convergent.

This lemma can be proved by regrouping the terms of the series in (5.7). Note that the
structure of indices in (5.6) is reminiscent of convolution. The statement of Lemma 3 can
be considered as an analog of the theorems related to convolution under Fourier transform.

5.2 Embedding formula
Introduce the functions fα(k) as follows. Let fα have diffraction indices α. Let fα be not
defined for the indices of zero order, and let for all other indices it be defined by the formula

fαm(k) = Fε[β−1
m Gα, k], (5.8)

where the sign ε depends on m and the last symbol of α according to the rule introduced
above.

Let fm−n be the sum of all functions fα, having the index of non-zero order starting with
m and ending with n, e.g.

f1−1 = f121 + f12321 + f12121 + . . .

The series for fm−n is asymptotic; its approximate value can be calculated by truncation.
Let f(k) be the matrix having the elements fm−n (m is the first index, n is the second one).

Theorem 1’. The following relation is valid

W4−n =
i(−1)n

β4(k∗)(k − k∗)

4∑

l=1

g4−m(k∗)Gm−n(k), (5.9)

where gm−n(k∗) are the elements of the matrix g(k∗):

g(k∗) = (I− f(k∗))−1. (5.10)

The relation (5.9) is analogous to the the embedding formula (3.7).
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Proof. Applying Lemma 2 (a), one can prove by induction the general formula

Wα =
i(−1)n

β4(k∗)(k − k∗)

n∑
m=0

gs(α,m)(k∗)Gt(α,n−m)(k), n = N(α) (5.11)

where the coefficients g are defined by the recursive relations:

gm ≡ 1 for m = 1 . . . 4 (5.12)

gαm(k∗) =
n∑

j=0

gs(α,j)(k∗)Fε[β−1
m Gt(α,n−j), k∗]. n = N(α). (5.13)

The induction is carried with respect to the order of the index α. Apply (5.11) to each term
of the series for W4−n. Using Lemma 3 obtain (5.9).

The expression (5.9) is equivalent to the embedding formula in the weak form (see (3.15)).
Simplify the functions gm−n(k∗). Using the notations for fα, rewrite (5.11) in the form

gα(k∗) =
n−1∑

j=0

gs(α,j)(k∗)ft(α,n−j)(k∗), n = N(α). (5.14)

Applying Lemma 3 obtain the following relation:

gm−n(k∗) = δm,n +
4∑

l=1

gm−l(k∗)fl−n(k∗), (5.15)

Solving this equation with respect to the values gm−n obtain the relation (5.10) ¥

Further simplification of the coefficients gm−n is possible in terms of the diffraction series
approach, but here for simplicity we prefer to compare the equation (5.9) with (3.7) and
write down the final result

g4−m(k∗) = (5.16)

−i(−1)m−1β4(k∗)
√

k2
0 − k2∗(Gm−1(−k∗)−Gm−2(−k∗) + Gm−3(−k∗)−Gm−4(−k∗)).

Note that equation (5.9) is exact (at least for the values k0 providing the convergence of
all series), although it has been obtained using the diffraction series technique.

5.3 Spectral equation

Let G(k) be a matrix 4× 4, whose elements are the functions Gm−n(k) (m corresponds to
the first index, n corresponds to the second one). Let be

Y =




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 .
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Theorem 2’. The following equation is valid

G′ = KG (5.17)

The matrix of the coefficients K has the form (3.22) with K± equal to

K+ = −1
2
(I− f(k0))Y(I− f(k0))−1,

(5.18)
K− = −1

2
(I− f(−k0))(I−Y)(I− f(−k0))−1,

The equation (5.17) is equivalent to the spectral equation (3.21); the matrix K in (5.17) is
equal to the matrix K in (3.21).

Proof. Due to the relations (4.12) the functions Gm−n are the linear combinations of Um
n ,

therefore if we find the linear ODE for G having the form (5.17) with the matrix K having
the appropriate structure, we can conclude that this K should coincide with (3.22).

Differentiate G with respect to k. Note that the coefficients βm obey the relations:

β′m(k) =
[
iam − 1

2(k ± k0)

]
βm(k), (5.19)

where the sign “+” is chosen for m = 2, 4 and “−” is chosen for m = 1, 3.
First, it is easy to prove by induction and using Lemma 2(a) that the following recursive

relations are valid for each term Gα:

G′α(k) = iajGα(k) +
n∑

m=0

(
Ps(α,m)

k − k0
+

Ms(α,m)

k + k0

)
Gt(α,n−m)(k), n = N(α) (5.20)

where j is the first symbol of α; Pα and Mα are the coefficients obeying the recursive
relations:

Pm = −1
2

Odd[m] Mm = −1
2

Even[m], (5.21)

Pαm =
n∑

j=0

Ps(α,j)Fε[β−1
m Gt(α,n−j), k0] +

Odd[m]
2

Fε[(βm)−1Gα, k0], n = N(α), (5.22)

Mαm =
n∑

j=0

Ms(α,j)Fε[β−1
m Gt(α,n−j),−k0] +

Even[m]
2

Fε[(βm)−1Gα,−k0], n = N(α);

(5.23)
Odd[m] = 1 for odd m, Odd[m] = 0 for even m, Even[m] = 1−Odd[m].

Second, consider the derivatives G′m−n. Using Lemma 3 one can obtain:

G′m−n = iamGm−n +
4∑

j=1

(
Pm−j

k − k0
+

Mm−j

k + k0

)
Gj−n, (5.24)

where Pm−n and Mm−n are the sums of the terms of Pα and Mα respectively over all indices
α starting with m and ending with n.
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The equation (5.24) can be rewritten in the matrix form (5.17). Comparing the coefficients
conclude that

K+
m,n = Pm−n, K−

m,n = Mm−n. (5.25)

Simplify the formulae for the matrices Pm−n and Mm−n. Using the notations introduced
above and applying Lemma 3, we can find that

Pm−n =
Odd[n]

2
(fm−n(k0)− δm,n) +

4∑

l=1

Pm−lfl−n(k0),

(5.26)

Mm−n =
Even[n]

2
(fm−n(−k0)− δm,n) +

4∑

l=1

Mm−lfl−n(−k0).

The systems (5.26) can be solved with respect to the values Pm−n and Mm−n. Taking
into account (5.25) we find the representations (5.18) ¥

5.4 Evolution equations

Introduce the values

Bj
αm = i(δl,j − δj,m) Cε[β−1

m Gα], Bj
m = 0, (5.27)

l is the first symbol of α; the symbol ε is used according to the rules introduced above, i.e.
it denotes ”+” if the m is equal to the last symbol of α plus 1, and it denotes ”−” if m is
equal to the last sign of α minus 1.

Let Bj
m−n be the sums of values Bj

α over all indices α starting with m and ending with
n.

Theorem 3’. The following equations are valid

∂

∂aj
Gm−n = ikδj,mGm−n +

4∑

l=1

Bj
m−lGl−n. (5.28)

The coefficients Aj
m−n of the evolution equations (3.25) are determined by the relation

Aj
m−n = ikδj,mδm,n + Bj

m−n. (5.29)

Proof. Differentiate the diffraction terms with respect to aj and apply Lemma 2(b):

∂

∂aj
Gm = ikδjmGm, (5.30)

∂

∂aj
Gαm = βmFε

[
β−1

m

∂

∂aj
Gα

]
− iδm,jCε[β−1

m Gα]Gm (5.31)



diffraction of a plane wave by two ideal strips 25

The formula (5.31) has a recursive form. Using (5.30) and (5.31) one can prove by
induction that non-recursive form for the derivatives of the diffraction terms is:

∂

∂aj
Gα = ikδljGα +

n∑
v=0

Bj
s(α,v)Gt(α,n−v), n = N(α). (5.32)

Applying Lemma 3 one can construct the derivative of the series Gm−n in the form (5.28).
Due to the linearity and the relations (4.12), we conclude that the equation

∂

∂aj
Um

n = ikδj,mUm
n +

4∑

l=1

Bj
m−lU

l
n

is valid. Comparing this with (3.25), we conclude that the identity (5.29) is valid.
Note also that

Bj
m−n = (−1)n−1Cm

n (δj,m − δj,n)¥

6. Numerical results

Let us discuss the numerical aspects of the proposed theory. The computation procedure for
such problems stronly depend on the relation between the wavelength and the geometrical
sizes of the scatterer (the sizes are ∼ a). The situation becomes simpler if waves are short
comparatively to all (or even some of) sizes. In this case the methods based on the ray
thechniques work very well. As the example we should mention the work (10), where the
combined method utilizing the ray ideas and the approximate Wiener-Hopf method has
been developed and very accurate results up to k0a ∼ 5 have been obtained. However,
these methods cannot be used when the wavelength has the same order or smaller than the
sizes of the scatterer.

The traditional way of solving the diffraction problems with arbitrary wavenumber is the
technique of boundary integral equations. However, specific numerical difficulties increase
rapidly as k0a increases, i.e. the situation is inverse to ray methods.

The current paper is devoted only to establishing the exact theorems concerning the
diffraction problems. Applying these results to practical calculations can be an alternative
to the traditional integral equations or ray method. Our theorems are valid for arbitrary
k0a. We expect that the following procedure for applying our results can give good results:

• one should formulate the eigenvalue problem for the spectral equation (3.21) with
respect to the elements of the matrices K±, taking into account the analytical
restrictions on Um

n ;
• one should solve the eigenvalue problem numerically, say, using gradient methods; One

can solve this eigenvalue problem for one particular combination of a1 . . . a4, and then
obtain the values of K± by solving numerically the evolution equations (3.27);

• using the values obtaining on the previous step, one can find the coefficiens and
the initial values for the spectral equation (3.21); this equation should be solved
numerically;

• using the embedding formula (3.8) or (3.7) one can find the spectral functions related
to the plane wave incidence problem. The field then can be reconstructed using (2.23).
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The implementation of the procedure described above is beyond the scope of the current
paper. However, we would like to uillustrate to validity of at least some elements of our
theory by a numerical example based on the technique developed in Sections 4 and 5.
Namely, we are going to obtain the approximate (asymptotic) results by truncating the
series standing in the right of (5.18).

Our purpose here is to demonstrate the validity of the embedding formula (3.8) and the
spectral equation (3.21). We don’t touch here the evolution equations, since the equations
(3.27) are nonlinear, and the detailed analysis of the stability of their solutions should be
performed. It can be the material for another paper.

To solve (3.21) we need to find the constant matrices K± and to calculate Um
n known at

some reference point kr to use them as the initial conditions. We use for this the technique
of the diffraction series. Namely, the formulas (5.18) are used do evaluate the coefficients
of the equation, and the formulae (4.12) are used to evaluate Um

n (kr).
Numerical calculations were conducted as follows:

• The parameters of the problem were chosen as k0 = 1 + 0.2i, (this corresponds to
the wavelength close to 6), a1 = −12, a2 = −4, a3 = 4, a4 = 12. The ratio of the
wavelength to the width is close to 1. The angle of incidence is chosen as ψ = π/2.
This corresponds to k∗ = 0.

• The coefficients K± of the equation (3.21) were estimated using the formula (5.18).
The series fm−n were truncated such that only the term with the indices of order 1
were left. Thus, the approximation for f was chosen as

f ≈




0 f12 0 0
f21 0 f23 0
0 f32 0 f34

0 0 f43 0


 .

• The reference point kr was chosen equal to 0. The initial data for the equation (3.21),
namely, the values Um

n (0), are found using the formulae (4.12). The matrix G was
estimated as the truncated series. We left only the terms with the order not higher
than 1:

G ≈




G1 G12 0 0
G21 G2 G23 0
0 G32 G3 G34

0 0 G43 G4


 .

• Using the coefficients and the initial data found on the previous steps, the equation
(3.21) was solved numerically on the segment k = (−80, 80).

• The functions Um
n (k) were substituted into the embedding formula (3.8). As the result,

the function U1(k)+U3(k) was obtained for k∗ = 0. The absolute value of this function
on the segment k = (0, 1) is shown in Fig. 5.

• The check of the numerical solution obtained above has been performed using the
Fourier transform. Namely, the field and its normal derivative was calculated for y = +0
numerically by using the formula (2.23). The numerical values of the function found on
the previous step were substituted into this formula and the discrete Fourier transform
was performed. The results are shown in Fig. 6,7,8. One can see that the field on the
strips is approximately equal to −uin(≡ −1), and the normal derivative of the field
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Fig. 5 The spectral function of the field

is approximately equal to zero on the segments x ∈ (−∞, a1) ∪ (a2, a3) ∪ (a4,∞). It
means that the boundary conditions (2.4), (2.5) are approximately fulfilled.

As the result of the conducted numerical procedure, we can conclude that the approximate
method based on the spectral equation gives reasonable results, even being very rough. We
should repeat that the proper numerical use of our theorems requires a more sophisticated
procedure.

Fig. 6 The real part of the scattered field on the x-axis

7. Concluding remarks
The main result obtained in this paper is the spectral equation (3.21) having the rational
coefficients known up to several constant parameters. Although this result does not provide
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Fig. 7 The imaginary part of the scattered field on the x-axis

Fig. 8 The absolute value of the normal derivative of the scattered field on the x-axis

the solution of the diffraction problem in the closed form, it indicates the class of functions,
in which the solution can be found. Moreover, this result establishes the link between the
diffraction theory and the theory of confluent Fuchsian equations. In terms of this theory,
the solution of the diffraction problems is found by introducing some special functions
(namely, Um

n (k) or Gm−n). As it is typical for the special functions, an eigenvalue problem
should be solved to determine the parameters of the equation. Some useful properties of new
special functions are formulated as evolution equations. An effective method for calculations
of the unknown constants and the initial data for the spectral equation is provided by the
diffraction series technique.

Any set of the ideal strips located in one plane can be treated using our method.
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All equations are generalized in obvious way. In the case of non-ideal strips having the
impedance boundary conditions on their sides, the spectral equation cannot be derived, at
least in the form (3.21), however, the embedding formula and the evolution equation remain
valid with slightly changed coefficients.
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