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Introduction

Here we consider the problem of excitation of wave field in equilateral triangular area with
impedance boundary conditions. This area can be the cross-section of waveguider or resonator.

Such a problem with the ideal boundary (Dirichlet’s or Newmann’s ones) can be easily
solved with the method of images [1]. Unfortunately, this method cannot be enhanced for
impedance boundary conditions. Variables also cannot be separated in this case. Here we use
functional equations of Maljuzhinetz’s type [2] to solve this problem.

The paper is organized as follows.
In the first section we derive functional equation with the help of the second Green‘s formula.

Fourier transform of the field on the boundary is the unknown function of this equation. Some
obvious properties of geometrical symmetry are used to simplify the equation. The result is the
equation that combines linearly the values of unknown function û(ϕ) at the points ϕ, ϕ+2π/3
and ϕ− 2π/3 of arbitrary ϕ. Also some restrictions are posed on the unknown function. They
are the conditions of analiticity and decrease. They follow from some well-known theorems
concerning Fourier transform.

In the second section the method of images is applied to the functional equation. The result
is a functional equation containing two values of unknown function instead of three.

In the third section the eigenvalue problem of considered area is solved. Eigenfunctions are
calculated. We show that the eigenfunctions are combinations of plane waves.

In the fourth section the problem with inhomogenous boundary conditions is solved. The
solution is presented in the form of an infinite sum over the zeros of a certain entire function.

In the fifth section we show the way of reconstruction of the wave field in the area using
Fourier transform of the field on the boundary. An integral representation is constructed.

In the sixth section we study the case of a very long side of the triangle (in comparison with
the wavelength) and a small dissipation in the media. We show that the solution in this case
coinsides with known solution for an angle with impedance boundary.

1 Problem formulation and derivation of functional equa-

tion

Consider an equilateral triangle with the side L. This triangle and coordinates are shown at
Fig.1. The sides of the triangle are numbered with indexes 0, 1, 2 in positive (anticlockwize)
direction beginning with the horisontal side. Introduce local linear coordinates l0, l1, l2 along
each side of the triangle as it is shown on the figure. It is obvious that each coordinate takes
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values from 0 to L. These coordinates can be arguments of functions defined on the sides of the
triangle. We will use the notation u(l0) for the values of function u on the side 0 and notation
u(a)|l0 for the function u at the point on side 0 where coordinate l0 is equal to a

Let n be an internal normal vector to the boundary of triangle. Angle ϕ that is used for
derivation of functional equation is shown at Fig.1.

Let Helmholtz equation be valid for function u(x, y) inside the triangle:

∆u + k2
0u = 0 (1)

Note that the stationary problem is considered and time dependence has the form of factor
eiωt. Hence the wave travelling along x axis in positive direction is e−ik0x.

Boundary conditions have the impedance form

∂u

∂n
− iuk0 sin β = Φ, (2)

where sin β is a parameter, and Φ are known functions that correspond to forces on the bound-
ary. If the boundary conditions are homogenous (Φ = 0) than the reflection coefficient for
incident plane wave coming at the angle ψ with the boundary is

Kref =
sin ψ − sin β

sin ψ + sin β
.

Therefore the surface is passive when

Re[sin β] ≥ 0.

It is necessary to formulate Meixner’s conditions at vertexes of the triangle. Let r be the
distance from the vertex. Function u must have the asymptotic

u ∼ U0 + o(rδ), where δ > 0.

Let us derive the functional equation. Apply the second Green’s formula:

∫
[u′

∂u

∂n
− u

∂u′

∂n
]dΓ = 0, (3)

where u′ is an arbitrary solution of equation (1) in the area and the integration is performed
along the whole boundary.

Replace u′ with a plane wave travelling at an angle ϕ with respect to x axis:

u′ = e−ik0(x cos ϕ+y sin ϕ).

Since the integration in (3) is performed along the boundary, it is useful to find the restriction
of u′ to the sides of triangle. It is easy to show that

u′(l0) = e−ik0l0 cos ϕ,

u′(l1) = e−ik0L cos ϕe−ik0l1 cos(ϕ−2π/3),

u′(l2) = e−ik0L cos(ϕ−π/3)e−ik0l2 cos(ϕ+2π/3).

2



The normal derivatives of u′ can be found in the same way:

∂u′(l0)
∂n

= −ik0 sin ϕe−ik0l0 cos ϕ,

∂u′(l1)
∂n

= −ik0 sin(ϕ− 2π/3)e−ik0L cos ϕe−ik0l1 cos(ϕ−2π/3),

∂u′(l2)
∂n

= −ik0 sin(ϕ + 2π/3)e−ik0L cos(ϕ−π/3)e−ik0l2 cos(ϕ+2π/3).

Normal derivative of u can be calculated from

∂u

∂n
= Φ + iuk0 sin β.

The values obtained can be put into (3). We obtain

0 =
∫ L

0
[−iu(l0)k0(sin ϕ + sin β)− Φ(l0)]e

−ik0l0 cos ϕdl0+ (4)

+
∫ L

0
e−ik0L cos ϕ[−iu(l1)k0(sin(ϕ− 2π

3
) + sin β)− Φ(l1)]e

−ik0l1 cos(ϕ−2π/3)dl1+

+
∫ L

0
e−ik0L cos(ϕ−π/3)[−iu(l2)k0(sin(ϕ +

2π

3
) + sin β)− Φ(l2)]e

−ik0l2 cos(ϕ+2π/3)dl2.

Use the obvious symmetry of the problem with respect to the rotation about geometrical
center of the triangle at angle 2π/3. Split the initial problem into three independent problems
which have properties

uν(l)|l1 = e2πiν/3uν(l)|l0 , uν(l)|l2 = e−2πiν/3uν(l)|l0 ,
Φν(l)|l1 = e2πiν/3Φν(l)|l0 , Φν(l)|l2 = e−2πiν/3Φν(l)|l0 ,

were ν takes values 0,1,-1. It is evident that each type of symmetry of u corresponds to the
same type of symmetry of Φ. Thus, we make discrete Fourier transform with respect to the
number of side. Formulas of direct and inverse transforms are

uν(l) =
1

3
[u(l)|l0 + e−2πiν/3u(l)|l1 + e−4πiν/3u(l)|l2 ],

u(l)|lj = u0(l) + e2πij/3u1(l) + e4πij/3u2(l).

The same formulas are valid for Φ.
Further we consider the problem that belongs to one of the types of symmetry and we do

not write index ν.
Integrals in (4) have the form of Fourier integrals. Define Fourier transform as follows:

û(ϕ) =
∫ L

0
u(l)e−ik0l cos ϕdl (5)

Φ̂(ϕ) =
i

k0

∫ L

0
Φ(l)e−ik0l cos ϕdl.

Note that the combination of variables corresponding to the spatial frequency is k0 cos ϕ.
Hence, the inverse transform has the form

u(l) =
k0

2π

∞∫

−∞
u(ϕ)eik0l cos ϕd cos ϕ.
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Using the notations introduced above, equation (4) can be rewritten in the form

(sin ϕ + sin β)û(ϕ) +

+e−i(k0L cos ϕ−2πν/3)(sin(ϕ− 2π

3
) + sin β)û(ϕ− 2π

3
) +

+e−i(k0L cos(ϕ−π/3)+2πν/3)(sin(ϕ +
2π

3
) + sin β)û(ϕ +

2π

3
) = (6)

= Φ̂(ϕ) + e−i(k0L cos ϕ−2πν/3)Φ̂(ϕ− 2π

3
) +

e−i(k0L cos(ϕ−π/3)+2πν/3)Φ̂(ϕ +
2π

3
).

Note that û(ϕ) is unknown function of this equation. If we find this function for each ν we
can reconstruct the field and its normal derivative at the boundary. After that we can find the
field inside the area.

We must take into account some restrictions on the function û(ϕ), which follow from defi-
nition (5).

It is evident that û(ϕ) is an entire function of variable ϕ and it has the properties of
symmetry and periodicity

û(−ϕ) = û(ϕ), û(ϕ + 2π) = û(ϕ) (7)

Meixner’s conditions at vertexes lead to restrictions on growth of unknown function

û(ϕ) < D|cos ϕ|−1e−ik0L cos ϕ, Im[cos ϕ] > 0 (8)

û(ϕ) < D|cos ϕ|−1, Im[cos ϕ] < 0

We name equation (6) a functional equation because it contains values of unknown function
taken at different values of arguments.

2 Application of the method of images to the functional

equation

Equation (6) contains unknown values û(ϕ), û(ϕ− 2π/3), û(ϕ + 2π/3). Perform a formal sub-
stitution in equation (6) ϕ → −ϕ and use properties (7). Unknown values will be transformed
as follows:

û(ϕ) → û(−ϕ) = û(ϕ)

û(ϕ− 2π/3) → û(−ϕ− 2π/3) = û(ϕ + 2π/3),

û(ϕ + 2π/3) → û(−ϕ + 2π/3) = û(ϕ− 2π/3).

Therefore, equation (6) after the substitution contains the same unknown values but with
other coefficients. Namely, we obtain equation

(− sin ϕ + sin β)û(ϕ) +

+e−i(k0L cos ϕ−2πν/3)(− sin(ϕ +
2π

3
) + sin β)û(ϕ +

2π

3
) +
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+e−i(k0L cos(ϕ+π/3)+2πν/3)(− sin(ϕ− 2π

3
) + sin β)û(ϕ− 2π

3
) = (9)

= Φ̂(ϕ) + e−i(k0L cos ϕ−2πν/3)Φ̂(ϕ +
2π

3
) +

e−i(k0L cos(ϕ+π/3)+2πν/3)Φ̂(ϕ− 2π

3
).

We can exclude from (6) and (9) one of three unknown values. Let it be û(ϕ). We obtain:

û(ϕ− 2π/3)

f(ϕ− 2π/3)
− û(ϕ + 2π/3)

f(ϕ + 2π/3)
= µ(ϕ), (10)

where

µ(ϕ) = −2 sin ϕΦ̂(ϕ)λ(ϕ + 2π
3

)λ(ϕ− 2π
3

)

f(ϕ− 2π
3

)f(ϕ + 2π
3

)
+ (11)

+
[(sin β − sin ϕ)− (sin β + sin ϕ)λ(ϕ + 2π

3
)]Φ̂(ϕ− 2π

3
)

f(ϕ− 2π
3

)f(ϕ + 2π
3

)
−

− [(sin β + sin ϕ)− (sin β − sin ϕ)λ(ϕ− 2π
3

)]Φ̂(ϕ + 2π
3

)

f(ϕ− 2π
3

)f(ϕ + 2π
3

)
,

f(ϕ) = (sin β + sin(ϕ +
2π

3
))(sin β − sin(ϕ− 2π

3
))−

(sin β − sin(ϕ +
2π

3
))(sin β + sin(ϕ− 2π

3
))λ(ϕ),

λ(ϕ) = e−i(k0L cos ϕ−2πν/3).

Thus, we have functional equation containing unknown function at two (instead of three)
values of argument. The procedure performed can be interpreted from the physical point of
view. Excluding of û(ϕ) with the help of û(−ϕ) can be considered as reflection of plane wave
from the impedance surface. One can come to this conclusion comparing coefficients with
û(ϕ) in (6) and (9). The ratio of these coefficients is exactly the coefficient of reflection from
impedance surface.

We consider the procedure used in this paper to be an extention of the method of images.

3 Eigenvalues and eigenfunctions

Equation (11) enables to determine eigenvalues of the problem formulated. A transcendental
equation can be derived to find eigenvalues.

Consider a homogenous equation i.e. let be µ(ϕ) = 0. We obtain

û(ϕ− 2π/3)

f(ϕ− 2π/3)
=

û(ϕ + 2π/3)

f(ϕ + 2π/3)
.

The last equation is valid for arbitrary ϕ, therefore we can strengthen it:

û(ϕ)

f(ϕ)
=

û(ϕ + 2π/3)

f(ϕ + 2π/3)
=

û(ϕ− 2π/3)

f(ϕ− 2π/3)
. (12)
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Moreover, it is evident that
û(−ϕ)

f(−ϕ)
=

û(ϕ)

f(ϕ)
. (13)

Function û(ϕ)/f(ϕ) decreases at infinity and it is not equal to zero, hence it has some poles.
On the other hand, poles of function û(ϕ)/f(ϕ) correspond to zeros of function f(ϕ). Let

k0 be one of the eigenvalues of the area. As it follows from (12), a value γ must exist, such that
γ, γ + 2π/3 and γ − 2π/3 are zeros of f(ϕ).

Therefore, there are 3 equations with respect to 2 variables (γ and k0). One can see that
the third equation is a consequence of two other. I.e., if γ and γ + 2π/3 are zeros of f(ϕ) then
γ − 2π/3 is also a zero of f(ϕ).

First of all we write down an obvious trigonometric identity

cos ϕ + cos(ϕ + 2π/3) + cos(ϕ− 2π/3) = 0.

Hence
λ(ϕ)λ(ϕ− 2π/3)λ(ϕ + 2π/3) = 1.

Further we consider equations corresponding to conditions f(γ) = 0 and f(γ + 2π/3) = 0:

λ(γ) =
(sin β + sin(γ + 2π/3))(sin β − sin(γ − 2π/3))

(sin β − sin(γ + 2π/3)(sin β + sin(γ − 2π/3))
,

(14)

λ(γ + 2π/3) =
(sin β + sin(γ − 2π/3))(sin β − sin γ)

(sin β − sin(γ − 2π/3)(sin β + sin γ)
.

The third equation corresponding to f(γ − 2π/3) = 0 follows from (14):

λ(γ − 2π/3) =
(sin β + sin γ)(sin β − sin(γ + 2π/3))

(sin β − sin γ)(sin β + sin(γ + 2π/3))
.

Function f(ϕ) is periodical with a period 2π and f(ϕ) = f(−ϕ). Hence if α satisfies
equations (14) for certain k0 then −α satisfies (14) for the same k0. Therefore we must mean
6 values ±γ, ±γ ± 2π/3 as a solution of (14).

The set of two equations (14) with respect to two variables γ and k0 enables to determine
eigenvalues.

Let |Im[ϕ]| be large. Than zeros of f(ϕ) are situated near lines Re[ϕ] = πn, n ∈ Z and
only finite number of zeros lies outside the strips πn − δ < Re[ϕ] < πn + δ, for δ > 0. So one
can conclude that for any given k0 no more than finite number of values γ satisfies system (14).

The equation for eigenvalues is transcendental. Consider a particular case — Newmann’s
boundary conditions. In this case f(ϕ) has the form

fN(ϕ) = (1− λ(ϕ)) sin(ϕ + 2π/3) sin(ϕ− 2π/3). (15)

(For Dirichlet’s boundary conditions the procedure described above must be changed. One
must take the normal derivative of the field on the boundary as the unknown function.)

Zeros of fN(ϕ) for any k0 can be easily found. They are the values ϕ = ±2π/3 and all the
roots of equation cos(ϕ) = 2π(n + ν/3)/(k0L), n ∈ Z. Eigenvalue problem for k0 is reduced
to quadratic equation with integer parameters a and b:

k2
0 =

4π2

L2

[
(a + b +

2ν

3
)2 +

(a− b)2

3

]
,

6



cos γ = −2π(a + b + 2ν/3)

k0L
.

Besides, there is a solution γ = 0 for ν = 0 and arbitrary k0. This solution corresponds to
the field u = const in the area.

Now we return back to the problem with impedance boundary conditions and determine
eigenfunctions. Let some values γj satisfy (14) for certain eigenvalue k0. The unknown function
û(ϕ) satisfying (12) and (13) has the form

û(ϕ) =
∑

j

Ajf(ϕ)

cos 3ϕ− cos 3γj

, (16)

where Aj are arbitrary coefficients.
System (14) can be interpreted in the terms of the method of reflections. The initial plane

wave becomes the same wave multipied by e2πij (j = ±1) after two successive reflections.
Note that each eigenfunction in (16) is a sum of six plane waves, which are successively

reflected from the sides of the triangle. The initial wave propagates at the angle −γj to x axis.
Reconstruction of wave field in the area is discussed below.

4 Problem with inhomogenous boundary conditions in

non-resonant case

The solution for inhomogenous equation (10) can be constructed as follows. Consider the poles
in the right-hand side and the left-hand side. Note that functions û(ϕ) and Φ̂(ϕ) have no poles.
Hence, all the poles are zeros of f(ϕ). Assume that the frequency is not resonant for the area.
It means that no one zero of f(ϕ) is also a zero of f(ϕ± 2π/3).

Let αi are all zeros of f(ϕ) in the strip −π ≤ Re[ϕ] < π. Function µ(ϕ) has poles at the
points αi + 2π/3 + 2πn and αi − 2π/3 + 2πn. The first term in left-hand side has poles at the
points αi + 2π/3 + 2πn and the second at the points αi − 2π/3 + 2πn.

We represent µ(ϕ) in the form

û(ϕ)

f(ϕ)
=

∑

i

∞∑

n=−∞
[

Res[µ(ϕ), αi + 2π/3]

ϕ− (αi + 2π/3) + 2πn
+

Res[µ(ϕ), αi − 2π/3]

ϕ− (αi − 2π/3) + 2πn
]

Each term in the left-hand side of (10) can be represented as a sum of corresponding poles
of right-hand side:

û(ϕ)

f(ϕ)
=

∑

i

∞∑

n=−∞

Res[µ(ϕ), αi + 2π/3]

ϕ− αi + 2πn
= (17)

= −1

2

∑

i

sin αi Res[µ(ϕ), αi + 2π/3]

cos ϕ− cos αi

.

Note that the second identity follows from

Res[µ(ϕ), αi + 2π/3] = −Res[µ(ϕ),−αi + 2π/3], (18)

which can be checked directly. We must use the fact that αi are zeros of f(ϕ).
An entire function can be added to the solution (17) but it must be equal to zero because

of the decrease of û(ϕ)/f(ϕ) in the areas where it has no poles.
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Note that for large integer n the following estimations are valid:

cos αn ∼ 2πn + 2πν/3

k0L
, (19)

Res[µ(ϕ), αn + 2π/3] ∼ cos−4 αn,

The last estimation confirms the convergence of (17).

5 Reconstruction of wave field in the area

Unknown functions û(ϕ) have been obtained in previous sections as solutions of functional
equations for homogenous and inhomogenous problems. Here we reconstruct wave field in the
area using.

Apply again the second Green’s formula to the area and substitute u′ with Green’s function
of (1):

u′(r) = H
(1)
0 (|r − r0|),

where H
(1)
0 is a cylindrical function.

Using a well-known asymptotics of Hankel’s function

H
(1)
0 (z) ∼ −2i

π
lnz,

we obtain

u(r0) = − i

4

∫ [
∂u

∂n
u′ − ∂u′

∂n
u

]
dΓ, (20)

where integration is performed along the boundary of the area and the vector r0 points at the
source of Hankel’s function.

Use the integral representation of Hankel’s function [3]:

H
(1)
0 (z) =

1

π

∫

S
eiz cos(t−α)dt.

Contour of integration S is shown at Fig.2. Parameter α can be a real number from 0 to π.
We are calculating wave field at the point with polar coordinates (ρ, ψ) introduced by

x = ρ cos ψ, y = ρ sin ψ.

We take the integral over the side with number 0 in (20). Define α for each point of this side
as it is shown at Fig.3. Note that integration leads again to expression (5). After performing
the same procedure for each side we obtain

u(ρ, ψ) =
k0

4π

∫

S
[−Φ̂(t) + (sin β + sin t)û(t)]× (21)

×[eik0ρ cos(ψ−t) + eik0ρ cos(ψ−t−2π/3)λ(t + 2π/3) + eik0ρ cos(ψ−t+2π/3)λ−1(t)]dt.

Another representation can be useful

u(ρ, ψ) =
k0

4π

∫

S
[−Φ̂(t) + (sin β + sin t)û(t)]eik0ρ cos(ψ−t)dt+ (22)
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+
k0

4π

∫

S+ 2π
3

[−Φ̂(t− 2π

3
) + (sin β + sin(t− 2π

3
))û(t− 2π

3
)]eik0ρ cos(ψ−t)λ(t)dt+

+
k0

4π

∫

S− 2π
3

[−Φ̂(t +
2π

3
) + (sin β + sin(t +

2π

3
))û(t +

2π

3
)]eik0ρ cos(ψ−t)λ−1(t +

2π

3
)dt

Formulas (21) and (22) enable to calculate wave field in the area.
A good example how to apply the integrals above is the calculation of eigenfunctions. Use

solution (16) from the third section. Consider one of the terms in the sum:

û(ϕ) =
Ajf(ϕ)

cos 3ϕ− cos 3γj

=
Aj(sin β + sin(ϕ + 2π

3
))(sin β − sin(ϕ− 2π

3
))

cos 3ϕ− cos 3γj

−

−Aj(sin β − sin(ϕ + 2π
3

))(sin β + sin(ϕ− 2π
3

))λ(ϕ)

cos 3ϕ− cos 3γj

.

Apply formula (22). Regroup terms in integrands

u(ρ, ψ) =
k0

4π

(∫

S
−

∫

S− 2π
3

)
eik0ρ cos(ψ−t)×

×(sin β + sin t)(sin β + sin(t + 2π
3

))(sin β − sin(t− 2π
3

))

cos 3t− cos 3γj

dt + . . .

(two similar terms are implied).
Contours S and S − 2π/3 can be closed at infinity. Integrals become sums of residues at

points ±γj, ±γj + 2π/3, ±γj − 2π/3.
Using (14) we obtain

u(ρ, ψ) =
k0

6

6∑

n=1

eik0ρ cos(ψ−γj,n)

sin 3γj,n

× (23)

×(sin β + sin γj,n)(sin β + sin(γj,n +
2π

3
))(sin β − sin(γj,n − 2π

3
)),

where γj,n runs over ±γj, ±γj + 2π/3, ±γj − 2π/3.
Equation (23) confirms that eigenfunction is a sum of six plane waves.

6 Inhomogenous problem with large L

Equations (17), (23) Is the solution of the inhomogenous problem, but it is not clear how this
solution corresponds to known solution for impedance angle of π/3.

Suppose that L is large with respect to the wavelength and k0 has a small imaginary part
−iε. We suppose that at first L tends to infinity and then ε tends to zero.

Consider zeros of f(ϕ) in the asymptotics described above. It is obvious that λ(ϕ) grows
rapidly in the area between contours C and C +π (this area is marked at Fig.4.) and decreases
between contours C−π and C. Note that hereafter all the points of the plane ϕ are defined up
to 2πn. Zeros of function f(ϕ) belong to two kinds. Zeros of the first kind lie on the contours
C and C − π = −C. The quantity of zeroes that lie on the segment δϕ is denoted by δn and
can be found from (19):

δn

δϕ
=

k0L| sin ϕ|
2π

. (24)
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Zeros of the second kind are the zeros of the expression (sin β + sin(ϕ + 2π/3))(sin β −
sin(ϕ− 2π/3)) that are situated in the area of decrease of λ(ϕ) and the zeros of the expression
(sin β + sin(ϕ− 2π/3))(sin β − sin(ϕ + 2π/3)) that are situated in the area of growth of λ(ϕ).
It is evident that it depends on β, whether such zeros exist and where they are situated. One
can check directly that there are no zeros of the second kind in the case 0 < Re[β] < π/3 and
Im[β] < 0. Further we consider this case.

We calculate û(ϕ) for 0 < Re[ϕ] < π/3 and Im[ϕ] < 0.
Besides, we calculate u(l0) for values l0 small relatively to L. This fact is used as follows.

As it follows from (17), û(ϕ) has the form

û(ϕ) = −f(ϕ)
1

2

∑

i

sin αi Res[µ(ϕ), αi + 2π/3]

cos ϕ− cos αi

.

For the side with nimber 0 for small l0 we omit the term containing λ(ϕ) in f(ϕ):

û(ϕ) = −(sin β + sin(ϕ + 2π
3

))(sin β − sin(ϕ− 2π
3

))

2
×

×∑

i

sin αi Res[µ(ϕ), αi + 2π/3]

cos ϕ− cos αi

.

The sum over the poles that lie along the contour C can be replaced by integration if the
dencity of the poles δn/δϕ is large, i.e., if k0L is large. Using (18) and (24) we obtain:

û(ϕ) =
(sin β + sin(ϕ + 2π

3
))(sin β − sin(ϕ− 2π

3
))k0L

2π
× (25)

×
∫

C

sin2 α Res[µ(ϕ), α + 2π/3] dα

cos ϕ− cos α
.

Suppose that the force is applied to the points situated at the distance d from the point
(0, 0) on the sides 0 and 2 and having amplitudes −ik0A0 and −ik0A2 respectively:

Φ̂(ϕ) = A0e
−ik0d cos(ϕ) + A2e

ik0d cos(ϕ)λ(ϕ).

We calculate the factor Res[µ(ϕ), α + 2π/3] in the integrand of (25) neglecting λ(ϕ) in the
areas where the value λ(ϕ) decreases for large L:

Res[µ(ϕ), α + 2π/3] =
i

k0L sin α
×

×[
A0e

−ik0d cos α + A2e
ik0d cos(α+2π/3)

(sin β + sin α)(sin β + sin(α + 2π/3))(sin β − sin(α− 2π/3))
−

− A0e
−ik0d cos(α−2π/3) + A2e

ik0d cos(α+2π/3)

(sin β + sin α)(sin β − sin(α + 2π/3))(sin β − sin(α− 2π/3))
+

+
A0e

−ik0d cos(α−2π/3) + A2e
ik0d cos α

(sin β + sin α)(sin β − sin(α + 2π/3))(sin β + sin(α− 2π/3))
].

The solution obtained can be transformed to the representation from [4] after regrouping
the terms and deforming the contours of integration.
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7 Discussion

Functional equations similar to used in this paper can be easily derived for any closed 2D area
with piecewize-linear boundary. The procedure seemes to be more difficult for open areas but
functional equations can be derived for open areas as well.

Functional equation for the equilateral triangle can be solved explicitly because of the ge-
ometry of the area. We are not aware of the solutions for such areas as the right pentagon or an
arbitrary triangle. Probably some effective numerical methods can be found for such problems.
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