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Embedding is the process of taking the far field directivity from a diffraction
problem (or problems) involving line sources or multipoles placed at a sharp edge,
and then constructing the far field, for the same geometry, for more general inci-
dence using only this canonical problem(s). Thus far, embedding has been limited
to planar, parallel scattering surfaces, for instance, collections of parallel cracks or
slits; it had appeared that there was a fundamental limitation to embedding dis-
allowing its use for angular structures. In this article we overcome this limitation
and demonstrate the use of embedding upon wedge diffraction problems and upon
a simple polygonal shape.
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1. Introduction

Embedding is a relatively new, and under used, idea in diffraction theory and is
relevant to the scattering of electromagnetic, acoustic and elastic waves by struc-
tures. The applications are widespread and diffraction is important in, for instance,
radar, underwater acoustics, seismology and the non-destructive testing of elastic
media.

The fundamental idea of embedding is that one only ever solves a single master,
canonical, problem (or set of problems). Thereafter to extract the far-field be-
haviour for any plane wave incidence one only manipulates results from this master
problem. The result is that quantities (directivities) previously dependent upon
two parameters, become factorized into products of a function of a single variable,
together with a simple trigonometric term; this facilitates rapid numerical evalu-
ation. In principle, this should revolutionize many scattering calculations in every
area where diffraction occurs as one need only evaluate the directivities from the
set of canonical problems once. Given these directivities one manipulates them to
generate solutions for more general problems, rather than continually recalculating
and re-evaluating.

To date there have been few applications of the embedding idea. The large
majority of previous work has involved integral equation formulations (Williams
1982; Martin & Wickham 1983; Gautesen 1983; Biggs et al 2000; Biggs & Porter
2001,2002) and primarily involves scattering by (possibly multiple parallel) thin slits
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or cracks. Valuable though this integral equation approach certainly is, it does not
easily allow for physical interpretation, nor do the ideas transplant readily into, say,
finite element calculations commonly used in the acoustics/ engineering community.
With this in mind Craster et al (2003) developed a physical viewpoint of embedding
based upon canonical solutions (edge Green’s functions) i.e. line or point sources
at the edges of diffracting cracks or slits. The ideas then transplant easily into
elasticity, electromagnetism and waveguiding geometries; embedding then becomes
a general feature of diffraction theories unfettered by any specific solution technique.

We now turn our attention to another facet of embedding. Notably all previous
applications have involved parallel cracks or slits (bar Biggs & Porter (2001) who
deal with thick barriers, and thus have two right-angles at the end of each barrier)
and thus it is natural to inquire, how and whether, the theory can be advanced to
deal with non-parallel angled surfaces; the classical wedge geometries we consider
in this article provide an ideal, non-trivial, testing ground. We have however other,
more general reasons for wishing to extend the embedding idea further: Embedding
has recently been employed to good effect for scattering by a three-dimensional
structure, the quarter plane by Shanin (2004a, 2004b), which is a flat cone and
provides a three dimensional extension of the crack or slit theory of Craster et al.
(2003); although it is once again a planar geometry. Understanding embedding for
the two-dimensional angled wedge casts light upon how to tackle the more general
cone geometry and will eventually allow efficient treatment of it.

Moreover, recently Norris & Osipov (1999) in their study of an impedance wedge
noticed that their solution for the directivity had an intriguing and interesting struc-
ture, it was the product of two simple functions, dependent upon a single variable
and a purely trigonometric term. The impedance problem introduces further diffi-
culties and ultimately we aim to treat this too. Their result is strongly indicative
of the existence of an embedding formula for such geometries.

Here we consider plane wave scattering by wedge geometries (and later also a
polygonal shape), with either Dirichlet or Neumann boundary conditions on the
wedge faces, as a vehicle to advance our thesis that embedding is the fundamental
way of tackling diffraction problems. We begin, in section 2, by briefly describing
the solution to scattering of a plane wave by a wedge geometry and giving the
conventional directivity D(8,600); a function of two variables. The embedding for-
mula for D(6,6p) is derived in section 3(f) in terms of products of directivities,
D, (0), functions of a single variable, deduced from edge Green’s functions. Section
3 summarizes the embedding ideas using in Craster et al (2003) for line cracks,
discussing how those ideas fail for wedge geometries, and then describes in detail
how the embedding formula is constructed for angular domains. In particular, in
section 3(d), an operator is introduced that overcomes the previous restriction that
appeared to disallow angular structures from the embedding theory. Importantly,
we can move beyond the classical wedge geometry to consider polygonal structures
and in section 4 we consider scattering by an equilateral triangle.

Article submitted to Royal Soctety



Embedding formulae 3

Y

0=mt

0=1-20

Figure 1. The wedge geometry, showing the angles and notation used.

2. The classical wedge solution

(a) Problem formulation

We consider acoustic material occupying a fluid wedge of angle 7 —2® < 0 < 7;
the fluid wedge subtends an angle of 2® (see figure 1). The Helmholtz equation

V2u + kdu=0 (2.1)

holds for a velocity potential, u, in this wedge.

The boundary conditions are either Dirichlet i.e. u” = 0 or Neumann, du’¥ /06 =
0 on @ = m — 2P, 7; the superscripts D, N throughout this article will distinguish
the Dirichlet and Neumann cases respectively. We are interested in the scattering
of an incident field consisting of an incoming plane wave

U™ = exp [—z(k*x +1/kE — kzy)] = exp[—ikor cos(8 — 6p)] (2.2)

where k. = ko cosfp; 0y being the angle of incidence (cf figure 1).

We also require Meixner’s edge condition that states that the field near the edge
should behave as u ~ 79, for § > 0 in the Dirichlet case or A + Br?, for § > 0 and
A, B constant, in the Neumann case; the precise values of § are given later.

Additionally, the Sommerfeld radiation condition is also satisfied by the scat-
tered field; it does not contain waves incoming from infinity or fields growing at
infinity. In the wedge case the total field satisfying the radiation condition can be
additively decomposed into the incident and reflected fields (according to geometric
optics) and the scattered cylindrical field.
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(b) Local behaviour of the field

The wedge scattering problem is classical and several forms of solution are pos-
sible, using the Sommerfeld integral as reviewed in say, Bowman and Senior (1969)
or Felsen & Marcuvitz (1973), see also Rawlins (1987), or using an eigenfunction
expansion as in MacDonald (1902). For later reference we summarize those pieces
that we shall use later for comparative purposes. For instance, an eigenfunction
expansion gives

uP (r,0) = 41, Z sin[v, (6 — 7 + 2®)] sin[v, (fo — 7 + 2®)]e =™ /2 ], (kr) (2.3)
n=1

where v, = nw/2®, and likewise

oo
uN (r,0) = 21, Z €n COS[vn (0 — 7 + 2®)] cos[vy, (B — 7 + 2®)]e "™ /2], (kr).
n=0
Where €, = 1 for n = 0 and is 2 otherwise.

The full wedge solution can be found using Malhyuzhinet’s method (see the
review by Osipov & Norris 1999a) or, after more effort, using Fourier transform
and Wiener-Hopf techniques (Shanin 1997; Daniele 2003).

For this physically relevant problem, scattering by an incoming plane wave,
the solutions, u”Y, are constrained to be non-singular at the wedge tip. By using
separation of variables on Laplace’s equation Meixner-like conditions emerge, that
is, uP (r,0) ~ r¥» for all integer n such that v,, = nm/2®. Local to the edge we then
use this separation of variables and edge condition to specify the following form of
the total field:

oo
uPN =3 "(2/ko)" T(1 + vi) K2 N(6) ul ™, (2.4)
n=1
where
sin[v, (0 — m + 2®)] for Dirichlet,

(2.5)
cos[v, (0 —m + 2®)] for Neumann,

uE’N(r, 0) = J,,, (kor) {

for some functions K7V (6y) independent of 7,6 and
v, = nm /2.

The coefficients in (2.4) are chosen in a such way that the nth term of the sum has
the following asymptotic expansion:

(/o) DL+ 1) KD 0, (kor) = KPN (5 + O(r+2)).
From equation (2.3), the K2 (6y) introduced in (2.5) are directly evaluated as

4 —imUn /2 Ui
KP(6) = =< sinfvp (8o — 7 + 20)] (@) ,

nl(vy,) 2

We shall not actually need this information, in fact the eigenfunction solution is not
required at all for the embedding idea. We just require the knowledge of the form
of the local behaviour contained in (2.5) that emerges from separation of variables.
To within a multiplicative function of 6y, the K2V the local edge behaviour in
terms of r and 0 is assumed to be known.
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(¢) The directivity

In the opposite range of r, the far field, we define the far-field directivity,
l)D’N(g7 90), via

D,N
uPN(r,0) ~ m expli(kor +/4)] as kor — oo (2.6)
0 2

then it is well-known as in, say, Bowman and Senior (1969), that for wedge problems

1 1
DPN(0,00) = vsi +
(6,60) = vsinmv (coswy—cosy(Q—Ho) COS7TV—|—COSV(27T—2<I>—9—90)>

(2.7)
where we take the positive sign for Neumann and negative for Dirichlet, and v =
7w/2®. This far-field directivity is well-known and elegant, one aim of this paper
is derive an equivalent formula for this directivity, but by using embedding rather
than directly from some integral transform.

By extracting the far field behaviour of this scattering problem solely using
embedding techniques demonstrates that, to extract the far-field directivity, all
one ever needs to do is to solve simpler edge Green’s function problems. Thereby
“embedding” the directivity of this simpler problem in the directivity of the physical
problem. The value of this is that one can then apply embedding to more complex
angular structures, see section 4 for an illustration using an equilateral triangle.

3. Derivation of the embedding formulae

(a) The outline of the embedding procedure

Let us recall the sequence of operations, and physical ideas, required to deduce
the embedding formulae for thin cracks (® = 7 in the notation here) developed in
Craster et al (2003); the task is to relate the far fields of edge Green’s functions to
that of the physical field:

e First, one applies an operator, H, to the physical field u which is that corre-
sponding to an incoming plane wave incident upon the crack. For the crack
lying along y = 0 with « < 0 one applies

0
H = 7 + iko cos . (3.1)
Notably, the field given by HJu] is now an eigensolution (i.e. it does not
contain any incoming waves and satisfies the necessary boundary conditions),
and furthermore the physical field which has local edge behaviour u ~ Kr!/2
transforms after differentiation such that H[u] oc Kr~1/2,

e Second, one defines the edge Green’s function, 4, for a line source placed at
the tip of a crack having the same homogeneous boundary conditions as used
in the problem defining the physical field; this has local behaviour such that
@ ~ =12 as r — 0. This edge Green’s function is also an eigensolution all be
it an overly singular one.
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e Next, one applies the reciprocity theorem to both the edge Green’s function
and the physical field with plane-wave incidence. The field due to a line source
at the crack tip when observed at infinity is, by interchanging the positions of
the source and observer, related to the near field due to a line source suitably
displaced to infinity (plane wave incidence). Thus reciprocity relates the edge
Green’s function directivity, ﬁ(é)), to the near field of the physical problem
via K.

e Invoking uniqueness is the final, important, step. Here one notes that H[u]
is actually proportional to Ku; the constant of proportionality depends upon
the boundary conditions on the crack and is known. Both H[u] and the ap-
propriate multiple of K4 share the same far field, near field and boundary
conditions and thus by uniqueness are the same. One is then free to take the
far field limit of H[u] and of K4 (recall from the previous point that K and
D are related) and this then provides D(0,6) in terms of D(#) and D(6y)
and that then furnishes the embedding formula.

Similar arguments follow for many parallel, possibly, finite length cracks.

We shall follow the same procedure here, but there are several important dif-
ferences. Most urgently the operator H, (3.1), if applied to the wedge geometry, no
longer produces eigensolutions along the edge § = m—2®. Not only that, but neither
does the field H[u] have the singular behaviour at the wedge tip that corresponds
to that of an edge Green’s function. Thus we, apparently, have no way of generating
the appropriate overly singular eigensolution using a differential operator; this lies
at the root of why it is not thought to be possible to use embedding for non-parallel
geometries.

(b) Edge Green’s functions for a wedge

We begin with the second of the points above, that is, by considering the appar-
ently abstract problem of edge Green’s functions created by multipole excitation at
the tip of a wedge of the same angle, a schematic of which is shown in figure 2.

Let us construct the mth multipole source near the edge; we introduce a new
(more convenient) angular coordinate

p=60+20—m.
Furthermore, we place m line sources at the points

r =€, @:m, j=1...m,
m

and let the amplitudes of the sources be equal to —me~ "™ for the odd values of
J, and to me~¥m for the even values of j (we recall that v,, = 7m/(2®)) and we
assume that ¢ < 1. The field generated by this configuration of sources, in the limit
as € — 0, is the mth edge Green’s function for our problem, and it is denoted by
@D, The hat decoration is used to distinguish these edge Green function solutions
from those generated by incoming plane waves.

Let us now focus upon the local behaviour of this mth edge Green’s function,
@D . In the vicinity of the edge one solves Laplace’s equation, instead of Helmholtz’s
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by

Figure 2. The wedge geometry, for the edge Green’s function showing the angles and
notation used, together with line sources near the edge (here m = 6).

equation, and the solution is obtained using complex variables, for finite €, as:

— V. v v
v € m z¥m _ Vm
uznner ~ — Re ,
2 ZVm + eVm

where z = re’¥; one could view this as the inner limit of an asymptotic expansion.
The outer asymptotic limit, as e — 0, of this then gives

4l = r7m sin(vmp) (1 + o(1)). (3.2)

The edge Green’s function @ for the Neumann problem is obtained as the
result of a similar limiting procedure, but the sources are then placed at the points

_ 2
_m

r=c¢, , j=1...m.
The equivalent result to (3.2) is that
N =77 cos(vme) (1 + o(1)).

The arguments above are valid near any polygonal vertex, in the special case of
a wedge the edge Green’s functions emerge explicitly in terms of Hankel functions,

namely,
DN _ T ko o 1) sin
U = T ( 5 ) Hj ) (kor) cos (Vm ). (3.3)
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(¢) Applying the reciprocity theorem to the edge Green’s functions

_As in the physical problem we consider the far field and define the directivities,
DEPN(9), of the nth edge Green’s function 42V from

AD,N
D N('F, 9) ~ Dn (92 ei(koT'+7r/4) (34)
(27kor) 2

and for the wedge this directivity, from (3.3), is

- 2r (ko \"" ., /o | sin[vn (0 — 7+ 2®)] for Dirichlet
DN () = () e/ {

T(v,) \ 2 cos[vp (0 — m + 2®)] for Neumann

These directivities are only a function of a single angular variable.

We now apply the reciprocal theorem to a pair of solutions for the Helmholtz
equation with the wedge geometry described above, namely to the “physical” solu-
tion PN describing the field generated by the plane wave incidence and to one of
the edge Green’s functions 42-"V. The physical solution can be considered as being
generated by a line source located far enough from the wedge tip and having an
appropriate amplitude. By using the integral form of the reciprocal theorem and
performing an integral around the wedge tip, one can obtain the following relation

DN (60) = KN (3.5)
This relation establishes the connection between the edge behaviour of ©”-" and
the far-field directivity of one of the edge Green’s functions 42". In our case
these directivities are known to be simple functions, but it is also the case that the
relation (3.5) remains valid in significantly more complicated cases, e.g. for vertices
of polygons, in which case the directivities of the edge Green’s functions are not
known explicitly.

Indeed, this relation can also be verified directly for the special wedge geom-
etry used here, using the eigenfunction expansion (2.3) and the large argument
asymptotics for Hankel functions.

This relation has explicitly connected an edge Green’s function solution to that
from the physical problem. In actual fact we require, for our embedding formula, a
relation between their far fields; so far this relation connects the near field of one
to the far field of the other.

(d) The operator

This is probably the most crucial ingredient of the embedding recipe, and the
piece that has hitherto hindered further development of embedding into more gen-
eral geometries. The differential operator H that produces the embedding formula
for the wedge case must have the following properties:

e It should map a solution of the Helmholtz equation into a solution of the same
equation,

e It should maintain homogeneous boundary conditions on the faces of the
wedge (we shall find an operator preserving the common types of boundary
conditions: Dirichlet, Neumann, impedance),
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e It should have the property H|[u"] = 0 in order to generate an eigensolution
satisfying the radiation condition.

The first condition is satisfied by all operators having the form

N
o" o
n=1

for some constants a,, b, and c. Since the incident field, ", is an exponential in z
and y the third condition can be satisfied by an appropriate choice of the constant
c.

The most interesting question is how to construct the operator that a-prior:
preserves the boundary conditions. First we note that any operator having all the
b, equal to zero, i.e.

H:c—l—ian% (3.7)
n=1

preserves the boundary conditions (Dirichlet, Neumann or impedance) on the face
0 = m. If we were to rotate the coordinate system in such a way such that the new
x-coordinate axis corresponds to the wedge face 8 = m — 2®, then the operator H
would again be of the form (3.7) but now in this new coordinate system.

At first glance it is not clear how to find such an operator, however we shall use
an important additional property of the field, namely that it satisfies Helmholtz’s
equation (2.1). This equation is valid inside the fluid wedge, but it can also be
continued onto the faces of the wedge (except, maybe, at the wedge tip itself). So,
we obtain the following rule to transform the operators:

o? 0?

This means that the operators H,, H, defined as
i 0 i 0
T = 7 . =7
k() or

obey the same algebraic rules as do cosf and sin 6, respectively.
We settle upon the case of “rational” wedge angles

_am
p

20 (3.9)
for integer p and ¢. Notably, at present, it is only for rational wedge angles that we
can find an appropriate operator H.

We introduce the operator H as

H = (—iko)? [T, (H,) — Ty(cos by)] (3.10)

where T),(z) denotes the Tchebyshev polynomial. For instance for p = 3 the operator
is

o3 0 , .
H = 4$ + 3k8£ — 4(—ikg cos 0y)> — 3ka (—iko cos 0p). (3.11)
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Let us now prove that the operator (3.10) obeys all of the conditions mentioned
above, and therefore that it is ideal for producing embedding formulae.

First, this operator has the form shown in (3.7); it maps the Helmholtz equation
to itself and H[u™"] = 0. It directly preserves the boundary condition on the wedge
face 8 = w. Our remaining task is to show that this operator preserves the boundary
condition along the wedge face § = m — 2.

We rotate the coordinate system clockwise through an angle of 2® and consider
the form of H in the new coordinate system z’ and ¢y’ (2’ is along the wedge
face § = m — 2® and y’ perpendicular to it). This is performed as follows: The H,
operator can be formally substituted by cos # and then 6 is replaced by 6’ —2®, some
trigonometric identities are applied, and then finally cos’ and sin 6’ are substituted
by H; and H,, respectively.

In more detail, we note that the definition of the Tchebyshev polynomial is

T, (cos ) = cos(ph).
Consequently,

Ty(cos(0" — qm/p)) = cos(p(0" — qm/p)) = (—1)? cos(pd’),

and then
H = (=iko)? [(~1)7T, (H}) — Ty(cos b))

The result of these calculations is that the operator H in the transformed coordinate
system is again in the form (3.7), but now with derivatives taken with respect to the
new coordinate z’ directed along the second face of the wedge; therefore it preserves
the boundary conditions along this wedge face too.

(e) The operator H and uniqueness

The operator H as defined by (3.10) is now applied to the terms u2-" of the
representation (2.4); we shall find H[u2-"], and then consider its local asymptotics.

We do the Dirichlet case in detail, and just provide the Neumann result at the
end. The function H[u] necessarily satisfies the Helmholtz equation and boundary
conditions on both faces and outgoing waves at infinity, therefore it can be written
as

m

Hul N = "lenm o, (kor) + dpm HSY (kor)] sin(vim (6 — 7 + 2®)),  (3.12)

m

where the sum is taken over a set of integer indices m; we identify this finite set in
this section.

At this point, although ultimately interested in the mear field, it is useful to
study the far field of the expression H[uDN] where ulV is given by (2.5). This
enables us to find the coefficients ¢ and d rapidly.

Consider the leading term of the far-field asymptotics of H[uV], i.e. the term
behaving as /2 at infinity. Note that u2" has the following asymptotic expan-
sion:

/2
o (2 LT T (6 —
Uy " = (7‘(]4107“ cos (kor 5 2) sin(v, (0 — 7 4 2®))(1 4+ O(1/7)).
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To find the leading term of H[u2 "] we can restrict ourselves to differentiation
only of the radial part of u2"V which leads to

bz Up —p)T
) = g () (7o (hor - L2222
x sin(vy,p) cos(p ) — i T(cos GO)UE}(I +O0(1/r)). (3.13)

We recall that ¢ =0 — 7 + 20.

This asymptotic expansion enables us to say what terms appear in the sum
(3.12). Considering the angular part of (3.13) it becomes apparent that it is a sum
of harmonics with indices v,, v, — p and v, + p. Note that

Up £ D = Vp4q.
Thus, we find that m in equation (3.12) can take only three values:
m=mn,|n—q|,n+q.

To find the values of the coefficients ¢, , and d,,, we inspect the radial piece
of equation (3.13). There are two different cases: the first is when n > ¢, and the

second is when n < ¢. In the first case only Bessel functions appear in the expansion
(3.12):

—1)ekP —1)atpLP
Hluy, "N = (%Ur?ﬂ + ()fouff,q — (—iko)P Ty(cos O )u’ for n>q.

In the second case the situation is more complicated:
H D,N7 __ (_1)qk8 D ik )P T 0 D
[up, ] = T Untq (—iko)® Tp(cos Oo)u,, +

(,1)q+pkp
fo(*exp{*iqu_nﬂ'}uq_n - isin(uq_nw)Hﬁiln(kor) sin(vg—np)) for n < q.

Note that the Hankel function appears only for the index m = ¢ — n. For our
further consideration only the oversingular part is important as that is related to
the edge Green’s function. The study of the local edge behaviour enables us to find
the following edge asymptotics of the total field:

H[uP] = 2r(—1)7-PH1 Z K2(00)[vn(vn —1)ec(vn — p+ D]r— e sin(vy_np)+

n=1
+ Meixner terms. (3.14)

The oversingular terms in the sum are precisely the oversingular asymptotics of
edge Green’s functions ﬁl’?q -

To utilize uniqueness we now construct the following function:

g—1
w = H[uP] —2°(-1)77P+! Z K200) vy —1)...(vy —p +1)] ﬁfq

n=1

—n
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This function obeys the Helmholtz equation, Dirichlet boundary conditions, the
radiation condition and the edge condition; by uniqueness, it is identically zero. So,
we obtain the following (exact) representation for the field H[uP]:

qg—1
H[uP] = 2P (=1)T P " K P (00) [vn(vn = 1)..(vn —p+ 1)) L) . (3.15)

n=1

Hence the differential operator we use, (3.10), relates the physical solution to
a collection of edge Green’s functions generated by multipoles at the wedge tip.
Additionally, from reciprocity, we know the relation, (3.5), between the near field
coefficients K2 and the far-field directivity D2 .

(f) The embedding formulae

We are fundamentally interested in the far field behaviour, and specifically in
the directivities; to obtain these we take the large r limit of equation (3.15). We
know the far field behaviour of u? is characterlzed by a directivity D?(6,6,) and
that of each edge Green’s function, u2, by DD () (notably a function only of a
single variable). These directivities are modulated by known radial dependence,
and thus the derivatives in the differential operator, H[u], are easily done and we
find that:

S ()PP (v — 1) — p DID7 (G0) D (0)/ ()

(9 90) P
kb e 5" [cos pf — (—1)P cos pho]

(3.16)
In many ways this is a remarkably simple formula; it is in the form of a sum of
products of the edge function directivities divided by a trigonometric term involving
both 6 and 3. The Neumann result is identical with the superscript N replacing
D, and the right-hand side multiplied by minus one.

We have the directivities for the edge Green’s functions DP to0 hand and thus

- q+l _ _
990 :Z 2m)2[vn(Wn — 1)ec(vn —p+ 1)

nrl (V)T (vg—n)

" sin[vy, (6o — 7 + 2®) sin[vy_, (0 — 7 + 20)]
[cos pf — (—1)P cos pho] ’

(3.17)

There are many existing formulae for the directivity using various trigonometric
identities and the usual formulae (2.7), and for rational wedges some simplifications
occur, see Rawlins (1987), but this embedded formula has, apparently, not been
found before. Although this formula is not in reciprocal form, due to the coefficient
n, it can be shown that it does satisfy reciprocity.

(9) Illustrative case: right-angled wedge

The right-angled wedge is an important special case, and the operator we utilize
is simpler than the general form and is:

2
=9 _ (—ik,)?
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(note we have removed a factor of 2 from the general operator used earlier). Clearly,
this nullifies the incident field. It also evidently generates an eigensolution along
the negative x axis. To see that it also does along the negative y axis one uses the
fact that the physical field satisfies the Helmholtz equation to replace x derivatives
with y derivatives and the generation of an eigensolution is almost immediate. Thus
we use this operator to connect the edge Green’s functions with the physical field.
The intervening steps are the same as for the general formula, so we now turn to
the final formulae.
The well-known directivity is

1 1
cos 20 — cos 2 (6 — )  cos 2(6 — 2m) — cos 2(6p — 7r)>

2 2
DP(0,00) = 3 sin [3(90 - w)} <
after some reductions, the embedding formula:

2v1(n — 1)DP(00) D (6) + va(ve — 1) DP (60) DP (6)

DP(0,6,) =
(6:60) 7k (cos? 6 — cos? 6p)

emerges from (3.16) and further reduces to

DD(0790) =

4 sin/3
3

T =T [sin[%(00+7r/2)] sin[%(9+7r/2)]—sin[§(90—|—7r/2)] sin[%(@—Hr/Z)]].

It is not obvious that the first and last of these directivity formulae are actually
identical - but, after some algebra, they are. A notable point is that one requires
two edge Green’s functions for the right-angled wedge, one corresponding to a line
source and the other to a dipole at the wedge tip; for the line cracks in Craster et
al. (2003) only line sources were required. As we further alter the wedge angle more
multipole edge Green’s functions are required.

4. Scattering by an equilateral triangle

As an illustration of how embedding works in a less trivial case, namely in the
particular case of diffraction by a polygon, we consider the problem of diffraction of
a plane wave by an equilateral triangle (see figure 3); the boundary conditions along
the triangle faces are taken to be Dirichlet. Now we introduce three sets of local
coordinates (rj,¢;), j = 1,2,3 near the vertices of the triangle to study the edge
behaviour of the field and the global coordinates (r,6) for describing the far-field.
The incident wave is again a plane wave of the form (2.2).

For each edge of the scatterer the parameter 29 is equal to 57/3, and so, in our
earlier notation, we set p =3, ¢ = 5, and v, = 3n/5.

For each of the edges we must define ¢— 1(= 4) multipole edge Green’s functions,
namely @7, for j = 1...3,n = 1...4 according to the limiting procedure introduced
above. Each edge Green’s function certainly belongs to the Dirichlet type. For each
of the edge Green’s functions we define the directivity D7 (6), and we shall find the
directivity D(6, ) of the physical field v in terms of them. Finding the edge Green’s
functions and their directivities is a non-trivial problem at least as complicated as
solving the initial physical problem; but let us assume that they are known, or
obtainable.
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Figure 3. The triangle, showing the angles and notation.

We introduce the coefficients K7 (6y) describing the local behaviour of the phys-
ical field through the expansions

oo

uw(rj, ;) Z 2/ko)""T(1 + vy, ) K7 (0o) Ty, (kor;) sin(v,p;) (4.1)

valid near the edges. By applying the reciprocity argument we again establish that
K3(00) = — D3 (60). (4.2)

Now we can apply the operator (3.11) to the physical field u. By studying the
local behaviour of the field at the edges and applying the theorem of uniqueness,
we conclude that the result has the form

3 4
Hu] = Z > ha K, (4.3)

where
hyp = =8[vn(vy, — 1) (v, — 2)].

Now we are in a position to study the far-field asymptotics of the left- and
right-hand sides of (4.3), to obtain the embedding formula in its final form:

!
i hn D (60)D1_, ()

D —nN

(8,80) = ™ Z Z n(cos 30 + cos 36y)

_]:1 n=1

(4.4)
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On a practical level one would have to find the directivities for the multipole edge
Green’s functions, only once, and thereafter as the angle of incidence or observation
varied one manipulates them to generate to full directivity; this avoids continually
resolving the scattering problem.

5. Concluding remarks

Evidently, as demonstrated in detail here, embedding formulae can be constructed
for angular domains. This now opens the way to developing embedding for, say,
inclined cracks to surfaces and other finite geometries, and also to extending the
quarter plane (three-dimensional) results of Shanin (2004a,b) to polyhedral domains
and vertices. Other technical issues such as generalizing the governing equations to,
say, elasticity have been discussed for planar geometries in Craster et al (2003), the
wedge geometry for elasticity is much more challenging, but there is no fundamental
reason why it too could not be embedded.

Notably, here, we were limited to rational wedge angles, which raises the question
of whether we can generalize this to irrational, and thus completely general, wedge
angles. It is unclear whether this is so, and further work is underway to clarify this.
Nonetheless, it is now clear that embedding is not fundamentally limited to parallel
planar geometries.
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