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1. FORMULATION OF THE PROBLEM

We consider a two�dimensional problem of acous�
tic wave scattering by a periodic structure, shown in
Fig. 1. The structure is a diffraction grating with a peri�
odicity cell consisting of two perfectly absorbing
screens positioned along the y axis. The period of the
grating (along the х axis) is . The screens occupy
the half�lines  and

 
We consider a wave process with a narrow angular

spectrum concentrated near the direction of the x axis.
Such a process is described by the parabolic equation
of the diffraction theory [1],

(1)

which implies description of the diffraction process in
the Fresnel approximation. Here, k is a parameter (the
wavenumber) and u is the field variable of the para�
bolic equation. The latter is related to the physical
field variable (e.g., the sound pressure p) by the con�
ventional formula [1]

(2)

It is assumed that 
It is well known that, for the Helmholtz equation,

no perfectly absorbing boundary conditions can be set.
However, in the parabolic approximation, such
boundary conditions can easily be formulated for the
screens perpendicular to the x axis: it is sufficient to
require that the field be zero to the right of each of the
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screens. The reflected waves are not described by the
parabolic equation.

The formal statement of the problem for the para�
bolic equation should include the boundary condi�
tions set at the vertices of the screens, which consist in
the absence of any sources at the vertices. It is suffi�
cient to require that the field u near the vertices be lim�
ited.

From the upper half�plane , the following
plane wave is incident on the diffraction grating:

(3)

where  is the (small) angle of incidence measured
with respect to the x axis. Note that transformation (2)

( 0)y >
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Fig. 1. Geometry of problem.
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together with the approximations 

 reduce Eq. (3) to the expression for
a common plane wave.

It is necessary to determine the scattered wave usc

decreasing or propagating in the direction of increas�
ing Note that the incident wave is characterized by
the property

According to the Floquet principle, for periodic struc�
tures, a similar property should be characteristic of the
scattered field usc. Evidently, in the upper half�plane
(more precisely, for ), the scattered field can be
represented as the sum over the diffraction orders:

usc (4)

(5)

The branch of the square root is chosen so that the val�
ues are positive real or positive imaginary ones, which
correspond to outgoing or decreasing waves. Evi�
dently,  The coefficients  characterizing the
scattering into diffraction orders are of the main inter�
est for our study.

A solution to the problem is known for  
i.e., for the case of the period consisting of one screen.
This is the classical Weinstein problem [2, 3]. The
problem has been solved by the (scalar) Wiener–
Hopf–Fock method. The property of the solution that
is of main interest to us is as follows: for small values of

, all the coefficients except for the zero�order one
are small, while the zero�order coefficient behaves as

(6)

i.e., for , the mirror reflection coefficient tends
to –1 (here, ς is the Riemann function). This seems
surprising, because the screens are perfectly absorbing,
while a reflection coefficient of –1 corresponds to a
perfectly reflecting (acoustically soft) boundary. In
more exact terms, dependence (6) makes it possible to
ascribe a certain effective impedance to the boundary

 as viewed from the upper half�space (see below).
The aim of our paper is to study the coefficient 

for the problem stated above with a period consisting
of two screens. The problem is reduced to a matrix fac�
torization problem whose solution is unknown. In [4,
5], the Wiener–Hopf method was used to consider a
problem that was similar to our formulated one for

 , with the Helmholtz equation replacing
Eq. (1). In the cited papers, the matrix problem was
reduced to a scalar Fredholm equation of the second
kind. In this paper, we make no attempt to construct a
solution to the factorization problem. Instead, we gen�
eralize the method developed by L.A. Weinstein [2] to
the case of a matrix problem. This method allows us to
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analyze the coefficient  for  without con�
structing a solution.

The latest studies [6] show that the result 
is a general one for a wide class of problems concerned
with the reflection from the end of a waveguide for the
case where the frequency of the incident mode tends
to the cutoff frequency (the classical Weinstein prob�
lem is a reformulated version of precisely this prob�
lem).

Note that we proposed an alternative to the
Wiener–Hopf–Fock method for Weinstein�type
problems. The method was reduced to construction of
the so�called OE equation and its numerical or
asymptotic solution [7–9]. In the Appendix, we dis�
cuss the relation between the factorization problem
and the OE equation.

Let us consider the impetus of this study from the
physical viewpoint . According to Weinstein, applica�
tion of the reflection method to a planar waveguide
with perfectly reflecting walls reduces the problem of
diffraction by the end of the waveguide to the problem
of diffraction by a grating with perfectly absorbing
screens. In our case, this corresponds to gratings with

 Here, the screens correspond not to the
waveguide walls but to transitions from sheet to sheet
of a certain multisheeted surface to which the reflec�
tion method leads. The case  corresponds to a
planar waveguide with an asymmetric end. Such a
problem was considered in [3] in relation to simulation
of a Fabry–Perot resonator whose mirrors are shifted
with respect to each other (the effect of the shift of
mirrors on the Q factor of the resonator was investi�
gated). The same problem arises in analyzing the oper�
ational efficiency of a planar source near a rigid wall
with finite dimensions. Lastly, in recent publications
on aviation acoustics, the problem of radiation from a
planar waveguide with shifted walls was used to model
engine noise amplification at the edge of an airplane
wing.

A more general family of diffraction problems
(Weinstein�type problems) was introduced in [10].
The authors considered the high�frequency modes of
two�dimensional open resonators in the form of rect�
angular “rooms” with open “windows.” It was dem�
onstrated (in particular, by direct numerical simula�
tion) that the highest�Q modes have a billiard nature;
i.e., these modes have the form of beams with narrow
angular spectra, which propagate from wall to wall
along closed trajectories. For these modes, the main
mechanism of energy loss is diffraction by window
edges. Experimental data testifying to the existence of
such modes can be found in [11].

In [10], billiard modes were studied by the reflec�
tion method. It was assumed that the walls of the reso�
nator were perfectly rigid, while the windows had the
form of perfectly absorbing surfaces. In this case, a bil�
liard mode is transformed to a wave beam propagating
between two diffraction gratings, which consist of

0R in 0θ →

0 1R → −

.a b=

0c >
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absorbing screens. The Q factor of the resonator can be
determined if the coefficients of reflection from the
gratings are known. According to [10], different
geometries of resonators lead to different types of dif�
fraction gratings. We study one of the types here. Fig�
ure 2 shows the resonator that gives rise to the diffrac�
tion grating under study. It is a square resonator with a
side d and a corner window. The sides adjacent to the
window have lengths  and We consider a billiard
mode traveling along the diagonal. After applying the
reflection method, we find that the beam correspond�
ing to this mode is bounded by the grating shown in
Fig. 1 with the following parameters:

 

Now, let us make two additional comments. First,
the representation of the resonator windows as per�
fectly absorbing screens may seem rough or even
incorrect from the viewpoint of the description by the
Helmholtz equation. A correct but much less illustra�
tive description is obtained by applying the reflection
method to an acoustically stiff boundary, shown in Fig.
2 (an infinitely thin boundary in the form of a four�
piece broken line). In this case, the waves go to outer
space (to infinity). As a result of applying the reflection
method, we find that the wave beam corresponding to
the billiard mode propagates over a rather complex
branching surface. The role of the edges of perfectly
absorbing screens is played by branch points.

Second, it is necessary to comment on the use of
the parabolic equation to describe the wave process. It
is known that the parabolic equation adequately
describes the Fresnel diffraction and inadequately
describes scattering by the screen edges at large angles.
In our study, the parabolic equation is used because the
Fresnel processes are of main interest in describing the

1h 2.h

1 22 ( ) 2,a d h h= − + 1 22 ( ) 2,b d h h= + +

1 2( ) 2.c h h= −

diffraction by the grating under consideration. In the
case of grazing incidence, the problem is complicated
by the fact that the half�shadow zone of one of the
screens contains a considerable number of other
screen edges. Thus, a high�order half�shadow zone is
formed. Such half�shadow zones are adequately
described by the parabolic equation. Note that Wein�
stein solved the problem formulated for the Helmholtz
equation and also for the parabolic equation. From
these solutions, it follows that, for small angles of inci�
dence and small�angle scattering, the parabolic
description is quite adequate. The accuracy of the
Fresnel approximation can be estimated as the ratio of
the wavelength to the size of the first Fresnel zone cor�
responding to a single run between the screens, i.e.,

the ratio of 1/k to (a can be replaced by b). The
zone lying near the screen edge and characterized by a
size on the order of the wavelength is responsible for
scattering at large angles, whereas the Fresnel zone is
responsible for the formation of the half�shadow
region.

The main result of this paper is that, for large values
of k and , the coefficient of reflection into the
fundamental mode  tends to –1. Let us specify for
which parameter values this result is valid. Our consid�
eration requires that  and  to ensure
applicability of the parabolic equation. Values of these
parameters on the order of 10 are sufficient for a fair
accuracy of our approximation. Then, by analogy with
the classical Weinstein problem, we expect that the

deviation of  from –1 is about  (we assume
that a and b are of the same order of magnitude).
Hence, the reflection coefficient is close to –1 under

the condition that  In our formulation, the
screens are assumed to be infinitely thin. The effect of
the wall thickness on the result was not studied.

There is a hypothesis based on the results reported
by S.A. Nazarov [6] and the comments made in [2]
that the conditions  and  are not neces�
sary for the validity of the limit  at

i.e., the result holds for the case of a grating
whose dimensions are comparable with the wave�
length (evidently, in this case, it is necessary to formu�
late the problem on the basis of the Helmholtz equa�
tion). In addition, the same considerations suggest
that the structure of the grating is not really important.

2. DERIVATION OF THE WIENER–HOPF–
FOCK EQUATIONS

Let us introduce the functions
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Fig. 2. Open resonator and billiard mode.
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(9)

(10)

In Eqs. (9) and (10), the arguments  and
 mean that the values are taken to the left of

the screens.

Note that, since the total field  to the
right of the screens is zero (the screens are absorbing
ones), the following identities are satisfied:

(11)

(12)
Now, we use an important formula for the parabolic

equation [1]. If  is a solution to Eq. (1) within the
region  and this solution is continuous at
the boundaries of the given region, we have

(13)

where G is the Green’s function of the parabolic equa�
tion

(14)

Within the region 0 < , Eq. (13) yields

(15)

Formula (13) can also be applied within the region
 According to the Floquet principle, the

scattered field values at the boundary  can
be represented as the scattered field values taken at

 and multiplied by 

(16)

System of equations (15), (16) can be transformed
to a system of integral equations closed with respect to
the unknown functions u0 and u1. For this purpose, it
is sufficient to consider the first equation for  and
the second equation for  For these values, the
(unknown) functions  and  appearing on the
right�hand sides of the equations are identically equal
to zero. However, to derive the Wiener–Hopf–Fock
equations, it is worthwhile to leave Eqs. (15) and (16)
in their original form, containing redundant
unknowns, but being valid throughout the entire y
axis.

We introduce a one�sided Fourier transformation:

(17)

(18)

(19)

(20)

Note that integral operators (15) and (16) are of
convolution nature (a difference kernel). This allows
us to apply the convolution theorem and to represent
Eqs. (15) and (16) in matrix form:

(21)

where

(22)

(23)

(24)

Equation (21) should be complemented with a pri�
ori satisfied limitations on the unknown vector func�
tions  . The limitations follow from the gen�
eral properties of the one�sided Fourier transforma�
tion. Namely, the Function  should be analytic in
the lower half�plane of the argument while the func�
tion  should be analytic in the upper half�plane. In
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addition, a simple analysis shows that the functions 
 have discontinuities at  while the functions 

and  are discontinuous at  According to the
Watson lemma, this means that the vector 

decreases as  for large values of  in the lower half�

plane while the function  decreases as  in the
upper half�plane. The aforementioned limitations
together with equation (21) form a Wiener–Hopf–
Fock functional problem [2, 12].

The right�hand side of Eq. (21) can be represented
in the following equivalent form:

(25)

For the subsequent consideration, it is important that
the vector r does not depend on ξ. Here and below, I is
a 2 × 2 unit matrix.

The determinant of the matrix K is

The zero points of the determinant are .
According to the principle of ultimate absorption, we
assume that the points  belong to the upper half�
plane (i.e., the real axis bypasses them from below).
Accordingly, the points  belong to the lower half�
plane. In particular, the point  belongs to the
upper half�plane.

3. FORMAL SOLUTION TO THE WIENER–
HOPF–FOCK FUNCTIONAL PROBLEM

The general solution to the Wiener–Hopf–Fock
matrix problem is unknown and is not constructed
here. Instead, by the method proposed in [2], we ana�
lyze the mirror reflection coefficient  for 

Let us formally represent the solution to the
Wiener–Hopf–Fock functional problem [12]. Let the
following factorization be known:

(26)

where  and  are nonsingular regular matrices in
the lower and upper half�planes, respectively. In addi�
tion, we assume that  as  in the lower
half�plane and  as  in the upper half�
plane. The construction of such a factorization is the
main task in solving the Wiener–Hopf–Fock matrix
problem.

We multiply Eq. (25) by 
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We expand the right�hand side in the regular decreas�
ing vector functions  and  in the upper and
lower half�planes, respectively:

(28)

In the case under consideration, this expansion can be
represented in explicit form:

(29)

(30)

We rearrange Eq. (27) as follows:

(31)
According to the logic of the Wiener–Hopf–Fock
method, note that the left�hand side is regular and
decreases in the lower half�plane, whereas the right�
hand side is regular and decreases in the upper half�
plane. Since the left�hand and right�hand sides repre�
sent a single function, by applying the Liouville theo�
rem we conclude that this function is identically equal
to zero. As a consequence, we obtain

(32)
and

(33)
We invert the Fourier transformation and construct
the function u0:

(34)

Here, (1,0) is the row vector consisting of two ele�
ments.

The matrix  has zero points of its determinant,
which, in particular, occur at  for all the inte�
gral numbers n. These zero points lie in the lower half�
plane and, hence, refer to the factor  Let us con�
sider the point  At this point, the

(matrix) function  has a simple pole. We denote
the residue of the integrand at this point as

(35)
Note that

(36)

and, hence,

(37)

We close the integration contour involved in Eq.
(34) by a large arc lying in the lower half�plane
(because the exponential factor decreases in the lower
half�plane) and calculate the integral by the Cauchy
method (the integrand has poles and does not have any
branch points). As a result, the function u0 takes the
form of a series expansion in the poles of the integrand:
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(38)

The contribution to the integral corresponding to the
residue at the point  is  Com�
paring Eq. (38) with Eq. (4), we obtain

(39)

4. STUDY OF THE REFLECTION 
COEFFICIENT IN THE LIMITING CASE

We apply Weinstein’s technique to study the coeffi�
cient  for  The study is complicated by the
zero points of the determinant of matrix  that
occur at . We represent matrix K in the form

where matrix  is regular as a function of two vari�
ables for small values of ξ and  in particular, it has
no poles at  At the same time, let matrix 
together with its reciprocal matrix be regular in the
lower half�plane and let it tend to I within this half�
plane for high values of  Correspondingly, let matrix

 together with its reciprocal matrix be regular in the
upper half�plane and tend to I in the corresponding
half�plane for high values of  Such matrices can eas�
ily be constructed, which is demonstrated below.

Let matrices  and  factorize matrix ; i.e.,

with all the limitations. Then, evidently, we have

(40)

Matrices  and  are constructed as follows:
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Let us explain the structure of matrix  The central
factor is chosen to satisfy the following requirements:

(i) the matrix tends to I for large values of , while
the determinant tends to 1;
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As a result, the left multiplication of matrix K by

 not only leads to the disappearance of the zero
point of the determinant at  but also ensures
the regularity of all the elements of the product at these
values.

The right�hand factor is necessary to make the
entire product tend to I for large values of 

We can easily verify that matrix  =
has no singularities in the region of small (compared to

 values of ξ. For small values of variables ξ and
, matrices  and  are nonsingular and, for small

values of these variables, they are described by linear
increments, for example:

. (43)

Matrix  is nonsingular by its structure.
Let us return to estimating the coefficient  We

substitute Eqs. (40), (41), and (43) in Eq. (37). Note

that residue  has the form follow�
ing from Eqs. (40), (41), and (43),

and the value of  is determined as

Within the first approximation in , Eq. (37) yields
(44)

which corresponds to
(45)

Thus, the Weinstein method yields the result 
for  in the matrix case as well. This is the main
result of our study. It guarantees the presence of high�
Q modes in resonators similar to the resonator shown
in Fig. 2.

5. CONCLUSIONS

Let us assume that we somehow succeeded in cal�
culating the coefficient involved in Eq. (45), i.e., rep�
resenting the reflection coefficient in the form

(46)
The method of such a calculation for the case of small
c and  was described in [9]. This method can be
generalized to the case of  with a small difference
between a and b. Let us derive approximate impedance
boundary conditions for the boundary  of the
upper half�space. Namely, we determine the boundary
conditions so that, in the case of the reflection shown
in Fig. 3, the reflection coefficient is determined by
Eq. (46) to a first approximation in .
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The impedance boundary conditions have the form

(47)

where  η is the impedance. Under these
boundary conditions, the reflection coefficient is

(48)

For small values of , the reflection coefficient has
the form of Eq. (46) at

(49)

Thus, when  is small, the behavior of the diffraction
grating consisting of absorbing screens is similar to
that of an impedance boundary. This approximation is
more accurate, as compared to the approximation of a
perfectly soft boundary. It allows for the reflection loss.

Let us summarize the results of our study. Accord�
ing to [10], to estimate the Q factor of the resonator
shown in Fig. 2, it is necessary to calculate the scatter�
ing coefficient  for the diffraction grating con�
sisting of perfectly absorbing screens (Fig. 1). The
grating is considered within the parabolic equation
approximation of diffraction theory. We derived inte�
gral equations (15), (16) describing the system. These
equations were in a standard way transformed to
Wiener–Hopf–Fock matrix problem (25). We con�
structed a formal solution to this problem (formal,
because the solution to matrix factorization problem is
unknown) and derived expression (37), (39) for the
coefficient  We used the Weinstein method, consist�
ing in explicit separation of singular factors, to analyze
this expression and to obtain the result in the form of
Eq. (45). We showed that such a reflection coefficient
approximately corresponds to the impedance bound�
ary conditions that are set at the line  with the
impedance satisfying Eq. (49).

,u u
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in0( )R θ
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APPENDIX: DERIVATION
OF THE OE EQUATION

Earlier, we developed another approach [8, 9] to
Weinstein�type problems. It was based on the spectral
equation and the so�called OE equation. The spectral
equation is an ordinary differential equation for the
directional pattern of the field. The solution of the OE
equation consists in determining the coefficient of the
ordinary differential equation (the spectral equation)
from the known boundary values. The spectral and OE
equations were derived in [8, 9] by using a technique
that was specially developed for this purpose on the
basis of the uniqueness theorem. Here, we demon�
strate how the spectral and OE equations can be
derived immediately from the Wiener–Hopf–Fock
functional problem. We consider the case  which
is studied in detail in [8].

We represent functional equation (26) in the form

(50)

(51)

All the matrices involved in Eq. (50) depend on two
variables: ξ and  All the functional limitations
imposed on the regularity and growth concern only
variable ξ. Variable  plays the role of a fixed param�
eter.

A simple analysis based on the ideas described in
[8] shows that, for , the behavior of matrix K in
the lower half�plane and at the negative real semiaxis
is as follows:

(52)

where quantities  are unknown. A similar represen�

tation is valid for  in the upper half�plane on at the
positive real semiaxis. The representation obtained for
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Fig. 3. Construction of impedance boundary conditions.
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 in [8] shows that this function rapidly decreases
with increasing  within the intervals

 and 
We introduce the differential operator

(53)

Note that  and, therefore,

(54)
From Eqs. (53) and (54), we obtain

(55)

From the properties of the matrices  and  it fol�
lows that the right� and left�hand sides of Eq. (55)
involve matrix functions that are regular in variable ξ
and increase at infinity no faster than a constant does.
From Eq. (52), we find that this constant is

(56)

Hence, matrices  and  satisfy the differential
equation

(57)

where A should be replaced by  or  Equation (57)
is the spectral equation for the given problem.

Now, let us derive the OE equation. We change

from variables to variables  We
introduce a new dependent variable

(58)
For this variable, we represent Eq. (57) as
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inξ
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(59)

We introduce the OE notations. Let a certain dif�
ferential equation

(60)

with matrix coefficient F and unknown matrix func�
tion X be solved along the contour γ beginning at point

 and ending at point  Let the initial condition be

We introduce the notation

(61)

In fact, we introduce a notation similar to the integral
notation for solving an ordinary differential equation.

Using this notation and taking into account the

analyticity region of the functions  and , we rep�
resent the latter functions in the form

(62)

(63)

where the contours  and  are shown in Fig. 4. Both
of these contours go from infinity to point ξ, but the
contour  comes from the third quadrant and the
contour  from the first quadrant. Precisely this
choice of contours guarantees the analyticity and
growth conditions for the functions  and 

Let us consider the evident properties of the OE
symbol, namely: let  denote the contour traveled
along the contour γ but in the opposite direction.
Then,

(64)
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Fig. 4. Contours for derivation of OE equation.
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Let  be the concatenation of the contours  and
 (the contour  be traveled first). Then,

(65)

Combining Eqs. (64) and (65) and taking into account
the functional equation , we obtain

(66)

where the contour  is shown in Fig. 4.
Equation (66) is the OE equation for the given system.
It represents the problem of determining the unknown
coefficient  according to the boundary values given
by Eq. (66) for different values of the parameter p.
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