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Abstract

The problem of matrix factorization motivated by diffraction or elasticity is

studied. A powerful tool for analyzing its solutions is introduced, namely analytical

continuation formulae are derived. Necessary conditions for commutative factoriza-

tion are found; a link with previous works is established.
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1 Introduction

A matrix factorization problem is usually motivated by elasticity or wave diffraction and
typically its formulation does not contain a requirement of commutative factorization.
However, the possibility to perform a commutative factorization is usually studied very
carefully. The reason for this is intuitively clear. Commutating matrices (under some
other conditions) have a common set of eigenvectors, thus matrix logarithms can be com-
puted by taking logarithms of the eigenvalues. So the matrix problem becomes reduced
to several scalar ones.

The authors here had in mind the following targets:
— to introduce a powerful tool for studying properties of solutions of matrix factor-

ization problems even in cases when solutions themselves are not known;
— to introduce new formulations of matrix factorization problems;
— to formulate a condition, under which a commutative factorization is possible.
A condition, under which a commutative factorization is possible, has been studied

in details for matrices 2 × 2 [4]. A necessary condition for commutative factorization
has been found in an “Ansatz” form, i.e. a matrix should have a specific representation
including some entire (polynomial) matrices and some arbitrary functions as coefficients.
An explicit form of factorization for such matrices has been found by Khrapkov [8]. Some
cases of matrices with dimension more than 2 × 2 have been investigated by Lukyanov
[10], Lewis et al. [9] and some other authors using modifications of Khrapkov’s approach.

A weak point of Khrapkov’s solution is a behaviour of factors at infinity. For some
cases factors have polynomial growth, but in general the elements of the decomposition
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grow exponentially. Various techniques have been proposed to overcome this difficulty.
Most known methods have been suggested by Daniele [5] and Abrahams [1]. Alternative
approach based on Jacobi’s inversion problem was described by Zverovich [11], Antipov
and Silvestrov [2, 3].

More general (N×N) case has been studied by Jones [7]. He also obtained a necessary
condition in the “Ansatz” form, but his theory is valid for the matrices having distinct
eigenvalues everywhere. In fact, practically interesting matrices have distinct eigenvalues
almost everywhere (everywhere except the branch points of characteristic equation), so
the formulation of Jones’ theorem is excessively strict, as well as his Ansatz for the entire
matrix is. Below we propose a refined formulation of Jones’ theorem. However, we should
note that the changes of Jones’ result happen to be not too big.

In the current paper we are focused mainly on a necessary condition of commutative
matrix factorization. Constructive methods (leading to sufficient conditions) are beyond
the scope of this work. Also we study only algebraic matrices, and even sometimes restrict
the class of matrices to the so called “diffraction” ones, who are algebraic matrices of a
special form peculiar to diffraction theory.

For an algebraic matrix of a big dimension it is not always easy to find a good “Ansatz”
representation. That is why we pay some attention to “check-up” conditions of commuta-
tive factorization. I.e. we explicitly describe the manipulations giving the answer, whether
the matrix is factorizable or not.

Certainly, a work on such a subject cannot appear without being motivated by previous
research of other authors. Where it is possible we mention the parallels to (and sources
of) our ideas.

The paper is organized as follows. In Section 2 we formulate the problem of matrix
factorization. A definition for diffraction matrices is given there.

In Section 3 we describe Riemann surface of a solution of a matrix factorization prob-
lem (commutative or not). Explicit notation is introduced for bypasses about branch
points. Formulae of analytical continuation are derived. These formulae connect values
of unknown functions on the physical sheet with values on all other sheets. We introduce
a set of bypass matrices describing the transformations of unknown functions happening
when the argument is carried about branch points.

In Section 4 we formulate a necessary condition for commutative factorization in the
check-up form, and then reformulate the same conditions in the Ansatz form. Connections
with Jones’ theory are discussed there.

In Section 5 we study the group structure existing in the set of bypass matrices.
We reformulate the factorization problem taking into account this structure and discuss
Hurd’s ideas [6], which get a clear interpretation in our terms.

2 Problem formulation and important notations

2.1 Problem under consideration

The initial problem of matrix factorization is as follows:

Problem 1 (boundary factorization problem) For a matrix G(k) defined in a nar-
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row strip along the real axis (−ε < Im [k] < ε) find matrices Q+(k), Q−(k) analytical
(maybe except some isolated poles), continuous, and having algebraic growth in the upper
(Im [k] > −ε) and lower (Im [k] < ε) half-planes, respectively, and satisfying the equation

G(k) = Q+(k)Q−(k). (1)

Algebraic growth hereafter means that there exists a number l, such that all elements
of corresponding matrices grow at the corresponding half-plane no faster than |k|l. We
cannot expect that the elements will grow exactly as some powers of k, since the elements
of the solutions can have logarithmic behaviour.

Assume everywhere that the determinant of G is not equal to zero identically.
In some places below we specify the form of G in more details. Namely, we introduce a

class of diffraction matrices, which are typically coefficients of the Wiener-Hopf problems
appearing in diffraction and elasticity:

Definition 1 (diffraction matrix) If elements of matrix G(k) are rational functions of
k and of square roots

√

τ 2
m − k2, m = 1 . . . s, Re [τm] > 0 then it is called a diffraction

matrix.

3 Formulae of analytical continuation. Bypass ma-

trices

3.1 Notations for bypasses

Let RG be the Riemann surface of matrix G(k), i.e. RG is such surface that every element
of the matrix G(k) is a single-valued function on this surface. Below we shall call k an
affix of a point (k,G(k)) ∈ RG.

Let branch points of G(k) have affixes τ+
m and τ−m, where Im [τ+

m] > 0 and Im [τ−m] < 0.
Each affix has its order n±m, which is the least common multiple of all orders of branch
points with corresponding affix.

Make G single-valued on C by performing cuts going from branch points to infinity.
The cuts can be chosen as γ+

m = (τ+
m,+i∞) and γ−m = (τ−m,−i∞). It is important that the

cuts should not cross the real axis and each other. As a result, the surface RG becomes
split into several sheets. There is a special sheet of RG, on which equation (1) is assumed
to be valid. Name this sheet a physical sheet.

Introduce a notation for the sheets of RG. Note that later the same notation will
be used for the sheets of the Riemann surfaces of Q±. Each point of the surface will be
denoted by (k){w}, where k is the affix, and {w} is a word describing the path, along
which the argument k should be carried from physical sheet to a selected sheet. The
structure of this word is explained below.

Denote bypasses about points τ+
i in positive direction by letters ai and bypasses about

points τ−i in positive direction by bi (fig. 1).
A series of consecutive bypasses will be denoted by a word of letters ai and bi. The

word must be read from left to right, i.e. the first performed bypass corresponds to the
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Figure 1: Notation for bypasses

left end of the word and the last bypass corresponds to the right end. By default a series
of bypasses begins from the “physical sheet”. A trivial bypass will be denoted by letter e.

Define the composition of words w and v as the bypass performed along the way
composed of w and v. The bypass w is performed first. Denote this composition by wv.
Let W be the set of all words, and let Wa, Wb be the sets of words composed only of the
letters ai, and only of letters bi, respectively.

Let G(k){e} be the value of function G(k) on the “physical sheet”. Denote by G(k){w}
the value of G(k) on the sheet that can be reached by performing the bypass w starting
from the point (k,G(k){e}).

The set W can be considered as a group of words, a subject of combinatorial group
theory. Its generators are the letters ai, bi, and the relations have the form

a
n+

i

i = e, b
n−

i

i = e. (2)

As we shall see below, the same relations are valid for the words describing the Riemann
surfaces of Q±.

Relations (2) enable one to determine an inverse element for each w ∈ W without
introducing new letters for bypasses in negative direction (or without using the symbols
a−1
i and b−1

i ). In an important particular case of a diffraction matrix G, obviously we
have a−1

i = ai; b
−1
i = bi. Using (2), below we assume that for each word w there exists a

word w−1, such that ww−1 = w−1w = e.
Let us demonstrate an example of Riemann surfaces for G and Q+. Take matrix G

from Daniele’s paper [5]:

G(k) =

(

1 k1−s(k)
k2+s(k)

k2−s(k)
k1+s(k)

1

)

, (3)

where s(k) =
√

k2
0 − k2; k0, k1 and k2 are some complex constants.

In this case the Riemann surface of G(k) has two sheets and two quadratic branch
points, namely k = ±k0. Let be Re [k0] > 0. Let letter a denote a bypass about k0, and
letter b denote a bypass about −k0.
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Traditionally, the structure of Riemann surface is displayed by graphical diagrams.
Horizontal lines correspond to sheets (cut along γ±j ), nodes correspond to branch points,
and vertical lines link sheets, which are connected at a branch point.

The scheme for the Riemann surface of G is shown in Fig. 2 a. The upper sheet is
physical (i.e. it contains the “physical” real axis).

The scheme of Q+ corresponding to this problem is shown in Fig. 2 b. The number of
sheets is infinite, but all branch points are of second order, and positive physical half-plane
contains no branch points. This structure can be revealed, e.g. from [5].

Figure 2: Diagrams of Riemann surfaces for G(k) and Q+(k)

3.2 Truncation operators

Let be w = α1α2 . . . αn where αi substitutes an arbitrary single letter. Denote by p

the maximal number, such that the word α1α2 . . . αp ∈ Wa. Analogically let m be the
maximal number, such that α1α2 . . . αm ∈ Wb. Obviously, one of this integers is zero,
since the first letter of the word is either aj or bj.

Define the truncation operators + and − by

w+ = αp+1αp+2 . . . αn,

w− = αm+1αp+2 . . . αn.

For example, applying operators + and − to the words w = a1a2b1b2, v = b1b2a1a2 we
obtain

w+ = b1b2, w− = w = a1a2b1b2, w+− ≡ (w+)− = e,

v− = a1a2, v+ = v = b1b2a1a2, v−+ = e.

3.3 Derivation of the formulae of analytical continuation

Consider boundary functional equation (1). Both right and left sides of this equation are
analytic functions in some neighbourhood of the real axis of the physical sheet. Continue
Q+ and Q− analytically to this domain and, further, onto some Riemann surfaces. Con-
tinue also the relation (1) onto the Riemann surfaces of G, Q+ and Q−. Obviously, the
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continuation of the relation (1) can be written in the form:

Q+(k){w}Q−(k){w} = G(k){w}. (4)

At this moment we have not proved yet that functions Q+ and Q− have no branch points
except τ±i , so formula (4) has sense only for geometrically fixed bypasses.

Here we are going to find the formulae of analytical continuation for Q±, i.e. algebraic
relations connecting Q±(k){w} with Q±(k){e}.

First, as an example, obtain a formula of analytical continuation of Q+ into the lower
physical half-plane. Since the determinant of matrix G is not equal to zero identically,
the determinants of matrices Q+ and Q− are not equal to zero identically too. Using the
expression

Q+(k){e} = G(k){e} (Q−(k){e})−1, (5)

we obtain the formula of analytical continuation of Q+ onto the lower half-plane of the
physical sheet. Since the function Q−(k) has no branch points in the lower half-plane
we conclude that the branch points of matrix Q+ in the lower half-plane should coincide
with the branch points of matrix G. Moreover, behaviour of unknown function Q+ at the
branch points is defined by the behaviour of function G at the same points, e.g. if G has
branch points of second order then Q+ should have branch points of second order also.

General formulae of analytical continuation can be written in a recursive form as
follows:

Theorem 1 Let Q+(k) and Q−(k) form a solution of Problem 1. Then the following
relations are valid

Q+{w} = G{w+}G−1{w+−}Q+{w+−}, (6)

Q−{w} = Q−{w−+}G−1{w−+}G{w−}. (7)

(A dependence on k is implied for all functions in (6), (7)).

Note that for any word w their exists some constant c, such that w(+−)c

= e, therefore
formula (6) being repeated several times connects Q+{w} with Q+{e}. Analogously,
Q−{w} is connected with Q−{e}. The coefficients are always products of known matrices.
Proof: We are starting from regularity conditions

Q+{wa} = Q+{e} for wa ∈ Wa; Q−{wb} = Q−{e} for wb ∈ Wb

and following from them relations with truncation operators

Q+{w} = Q+{w+}, Q−{w} = Q−{w−}, (8)

which are obvious.
Denote by |w| the length of word w (note that the word {e} has zero length). Consider

two following cases:

1. Let be |w+| < |w|. Using (8) we represent the function Q+{w} through the function
Q+{w+}, which depends on the word of smaller length.
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2. Let be |w+| = |w| and therefore |w−| < |w|. Applying equation (4) to the sheets
labelled by words w and w− obtain

G{w} = Q+{w}Q−{w−}, (9)

G{w−} = Q+{w−}Q−{w−}. (10)

Using equations (8) obtain

Q+{w} = G{w}(G{w−})−1Q+{w−}.

Combining both cases, we obtain equation (6). Relation (7) can be derived similarly.
Theorem 1 is proved.

Analytical continuation in the form (6) has been obtained by Hurd [6] for a particular
case of a single bypass. Hurd’s ideas are discussed later in details.

Using analytical continuation we can investigate the structure of Riemann surface of
unknown function Q+. For example, the following proposition can be easily proved:

Proposition 1 Let G(k) be a diffraction matrix, and let the functions Q+(k) and Q−(k)
form a solution of Problem 1. Then both functions Q+(k) and Q−(k) can be analytically
continued onto some Riemann surfaces; both functions have branch points only at affixes
τ±i . The order of each branch point is a divisor of corresponding n±i .

A formal proof can be conducted by induction with respect to the length of the word
w, which is the argument of Q±(k){w}.

Generally, solution of Problem 1 is not unique: for example the behaviour of dif-
ferent solutions at infinity can be different. However, all solutions are similar up to a
meromorphic factor:

Proposition 2 Let Problem 1 have two different solutions, namely (Q+
1 (k), Q

−
1 (k)) and

(Q+
2 (k), Q

−
2 (k)). Then there exists a matrix K(k) meromorphic at all finite points of C,

such that
Q+

2 (k) = Q+
1 (k)K(k), Q−2 (k) = K−1(k)Q−1 (k). (11)

Proof: Consider the matrix

K(k) = (Q+
1 (k))

−1Q+
2 . (12)

It is clear that matrix K can have branch point on the physical sheet only in the lower
half-plane. Apply equation (1) continued onto the whole physical sheet. As the result the
same matrix becomes expressed in another form:

K = Q−1 (k)(Q
−
2 (k))

−1. (13)

According to this representation, matrix K can have branch points only in the upper
half-plane. Therefore, this matrix has no branch points. Proposition is proved.

The idea to use such matrix K to compensate the growth of the solution belongs to
Daniele [5].
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3.4 Bypass matrices and reformulation of factorization problem

Let G be an algebraic matrix, and let W be the set of words associated with this matrix.

Definition 2 A bypass matrix Pw(k) for a word w is defined by the relation:

Q+(k){w} = Pw(k)Q
+(k){e}. (14)

According to the formulae of analytical continuation (6),

Pw(k) = G{w+}G−1{w+−}G{w+−+}G−1{w+−+−} . . . (15)

Denote by Pw(k){v} the value of the matrix Pw(k) continued along the path v ∈ W
(formally, Pw(k) = Pw(k){e}).

Proposition 3 Let W be a group of words; let the alphabet consist of the letters ai and
bi associated with the affixes τ±i . Let Pw(k) be a set of algebraic matrices having branch
points only at the affixes τ±i . Let be

Pe ≡ I,

(I is the identity matrix), and for any two words w and v

Pwv(k) = Pw(k){v} Pv(k). (16)

Let T (k) be a matrix function with a selected physical sheet, having branch points on the
physical sheet only at τ±i , and

T (k){αi} = Pαi
(k)T (k){e}

for any single letter αi.
Then T (k) has branch points only at τi, and the formula of analytical continuation for

T (k) has the form (15).

A formal proof of Proposition 3 can be easily performed by induction with respect to
the length of w.

Proposition 4 Let G(k) be an algebraic matrix with a selected physical sheet, and Pw be
a set of matrices defined by the relations (15). Then the set Pw obeys the condition (16).

The proof of this proposition is rather straightforward, but quite lengthy, so we do not
put it here.

Matrices Pw generally do not form a representation of the group W , since one of the
factors in relation (16) depends on the second one. Later (in Section 5) we shall introduce
a proper group structure on W .

Let us demonstrate here two immediate consequences of Propositions 3 and 4. These
formulae will be used below.
1. If v is an arbitrary word and wa ∈ Wa then

Pwav(k) = Pv(k). (17)

2. For any word w and its inverse w−1

Pww−1 = I. (18)
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Problem 2 (bypass problem) Let G(k) be an algebraical matrix, let τ±i be affixes of
its branch points, and let W be a corresponding group of words. Let Pw(k) be a set of
bypass matrices, associated with the matrix G(k) and constructed by relation (15). Find
a function Q+(k) having branch points only with affixes τ±m, obeying relation (14), and
having algebraic growth at infinity.

The equivalence of the problems Problem 1 and Problem 2 can be proved by construction
of the set P .

4 Necessary condition for commutative matrix fac-

torization

4.1 Necessary condition in “check-up” form

The formulation of Problem 1 does not contain a requirement of commutative factoriza-
tion. Here, however, we try to find an answer for the following question: Under which
condition a commutative factorization is possible, i.e. when there exist matrices Q±(k),
such that

Q+(k)Q−(k) = Q−(k)Q+(k) = G(k) (19)

on the real axis of the physical sheet?
We shall call the relation Q+(k)Q−(k) = G(k) right factorization, and Q−(k)Q+(k) =

G(k) left factorization.
First introduce a definition:

Definition 3 Algebraical matrix G(k) is called commutative, if for any k the values of G
on different sheets of its Riemann surface commute:

G1(k)G2(k) = G2(k)G1(k).

In a word notation this condition has form

[G(k){w1}, G(k){w2}] ≡ G(k){w1}G(k){w2} −G(k){w2}G(k){w1} = 0. (20)

for any different words w1 and w2.
Note that our definition of commutativeness is weaker than Chebotarev’s definition of

functional commutativeness [4].
The necessary condition of commutative factorization is given by the following theo-

rem:

Theorem 2 If a diffraction matrix G admits commutative factorization, then it is a
commutative matrix.

Proof: The formula of analytical continuation (6) has been derived for right factoriza-
tion. One can obtain a similar formula for left factorization:

Q+{w} = Q+{w+−+−}G−1{w+−}G{w+}. (21)

Perform the rest of the proof step by step. Here we mark the statements and make
some comments if the statements are not obvious:
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1. For any word w Q+{w}Q−{w} = Q−{w}Q+{w} = G{w}. It is an analytical
continuation of (19).

2. For any word w [G{w}, (Q+{w})−1] = 0. This can be obtained by multiplying
the previous relation by (Q+{w})−1.

3. For any word w [G{w}, Q+{w}] = 0. This can be obtained from the previous
point by multiplication by G−1 at left and right.

4. For any v ∈ Wa [G{v}, Q+{e}] = 0. This follows from the previous point and (8).

5. For any word w [G{w}, Q+{e}] = 0. Note that for a diffraction matrix for any
word w there exists a word v ∈ Wa, such that G{v} = G{w}.

6. For any v1 ∈ Wb, v2 ∈ Wa [G{v1v2}, G−1{v2}] = 0. This statement can be
obtained by applying left and right analytical continuation formulae to the word
v1v2 and by using the previous point.

7. For any v1 ∈ Wb, v2 ∈ Wa [G{v1v2}, G{v2}] = 0.

8. The statement of the theorem, by noting that for any w1 and w2 one can find the
words vb ∈ Wb and va ∈ Wa, such that G{vbva} = G{w1}, G{va} = G{w2}.

Theorem 2 is the main result of the paper. Note that since the number of sheets of
G is finite, the necessary condition can be checked by checking a finite number of matrix
identities.

4.2 Diagonalization and properties of eigenvectors

Let a diffraction matrix G(k) have distinct eigenvalues almost everywhere (i.e. on the
whole complex plane excluding several points). Represent this matrix in the form

G(k) = M(k) diag{λ1, . . . λN}M(k)−1 (22)

Here matrix M(k) consists of vector-columns, which are right eigenvectors of G; λ1 . . . λN
are corresponding eigenvalues; N is dimension of G. Normalize the columns of M by
making all elements of the first raw of M equal to 1.

Obviously, for obtaining representation (22) one should first solve the characteristic
equation for G, and then find a solution of an inhomogeneous linear system for each
eigenvector.

Denote Riemann surface of matrix M(k) by RM . Now we have associated with a
matrix G two Riemann surfaces: RG and RM . Typically, say for Khrapkov matrices, RM

has a structure very different from RG.
Different authors studied matrix factorization problems by formulating a functional

problem on a Riemann surface. It is important to mention that most of them had in mind
the surface RM , not RG.

Obviously, Riemann surface for the eigenvalues λj(k) should contain branch points of
both structures, i.e. of G and of M .

10



Let G(k) be a commutative matrix. In this case the set of normalized eigenvectors
must be the same on all sheets of RM . Therefore, matrix M(k) possesses an important
property: any bypass about branch points leads to a permutation of the columns, i.e.
an analytical continuation of each column along a closed contour c on C is some other
column of M .

As an example, consider matrix (3), which is commutative. As it was mentioned, it
has only two branch points, namely ±k0. The scheme of Riemann surface for this matrix
is shown is Fig. 2 a. It is easy to find that matrix M for this G is as follows:

M(k) =





1 1√
k2
0
−k2−k2

2√
k2
0
−k2−k2

1

−
√

k2
0
−k2−k2

2√
k2
0
−k2−k2

1



 . (23)

Matrix M has four branch points, namely ±
√

k2
0 − k2

1 and ±
√

k2
0 − k2

2. Generally (i.e. if
k1 6= 0 and k2 6= 0) the branch points of RM are different from the branch points of RG.
The scheme of RM is shown in Fig. 3.

2/12
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2/12

1

2

0 )( kk --

2/12

2

2

0 )( kk --

2/12

2

2

0 )( kk -

Figure 3: Diagram of RM

A transition from one sheet of RM to another leads to a permutation of the columns
of M .

4.3 “Ansatz” form of necessary condition

Theorem 3 Let G be a commutative matrix N×N , whose eigenvalues are distinct almost
everywhere. Then it can be represented in the form

G =
N−1
∑

m=0

gm(k)A
m−1(k), (24)

where A(k) is a rational matrix, gm(k) are algebraic functions. Vice versa, any matrix
admitting a decomposition of the form (24) is commutative.

Proof: The second part of the theorem is obvious, so we are concentrating our
efforts on the first one. Consider matrix M(k). Let πc be a permutation of columns of M
occuring when the argument is carried along a contour c on C starting and terminating
at k. Let Πc be a matrix containing only numbers 0 and 1, describing permutation πc in
matrix language, i.e.

(Πc)
m
n = δm,πc(n), (25)
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and the permutation of columns of M looks like M →MΠc.
Construct N functions fm(k), m = 1 . . . N as follows. Take N constants β1 . . . βN such

that the combinations

fm(k) =
N
∑

n=1

βn(M)nm, (26)

almost everywhere obey the relation fm1
(k) 6= fm2

(k) as m1 6= m2. (Here (M)nm are the
elements of M .) Obviously, fm → fπc(m) when the argument is carried along c.

Construct a combination

A(k) = M(k) diag{f1(k), . . . , fN (k)}M−1(k). (27)

Note that the diagonal matrix obeys the relation

diag{fπc(1), . . . , fπc(N)} = Π−1
c diag{f1, . . . , fN}Πc. (28)

Substituting (25) and (28) into (27), conclude that A remains unchanged after any by-
pass c. Since A is an algebraic matrix by construction, it should be a rational matrix.

Finally, let us show that G can be expressed in the form (24) with matrix A constructed
above. The matrix composed of the elements (F )mn = fm−1

n (here m− 1 = 0 . . . N − 1 is
a power) has a non-zero determinant almost everywhere. In the opposite case it would
happen that N distinct numbers are roots of a polynomial of order smaller than N .
Therefore any set of N numbers, for example the eigenvalues of G, can be represented as

λn(k) =
N
∑

m=1

gm(k)f
m−1
n (k) (29)

for almost all k. By construction, gn are algebraic functions.
The theorem is proved.
The form (24) is close to that of [7], however on one hand we impose no restrictions

on the behaviour of the matrices Q±, and on the other hand, we do not specify the form
of equation, which matrix A should obey. Theorem 3 together with Proposition 2 provide
a modified Jones’ result.

Theorem 3 states that there are two alternative ways to check, whether a diffraction
matrix G can be factorized commutatively: 1) by checking whether a matrix can be
represented in a certain form, and 2) by checking conditions (20) between different sheets.
The second variant seems more easy.

4.4 Formulation of scalar bypass problem for eigenvalues

Let c be a bypass on C, starting and terminating at k. Define two objects depending
on c. The first object is the word wc, describing the bypass, which is the rising of c onto
RG. The second object is the permutation πc of the columns of matrix M explained in
the previous subsection.

Write the bypass matrices Pw(k) in a diagonal form:

Pw = M diag{pw,1 , . . . , pw,N}M−1, (30)
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where pw,m(k) are certain algebraic functions of k.
Write the solution Q+ of the matrix factorization problem (1) also in a diagonal form

Q+ = M diag{q+
1 , . . . , q+

N}M−1, (31)

where q+
m(k) are unknown eigenvalues.

Reformulate Problem 2 for eigenvalues. Let (q+
m)c be the value of q+

m continued along
the contour c. Taking into account the permutations of the eigenvectors, the condition
(14) can be written in the form

(q+
m)c = pwc,m q+

πc(m). (32)

Now we can formulate the problem for the eigenvalues:

Problem 3 Find N functions q+
1 , . . . , q+

N , growing algebraically at infinity, whose analyt-
ical continuations obey relation (32) for any contour c.

The problem formulated here is a set of scalar problems. After some algebraic manip-
ulations it can be reduced to Jacobi’s inversion problem. The way to do this is close to
the methods described in details in [12, 2] and some other papers. Here, however, we are
not focused on solving this problem.

5 Group structure on bypass matrices

5.1 Closed words

Previously we introduced word notation for bypasses by their projections onto C. Each
bypass was closed on C, but not necessarily closed when risen to RG. Here we study
subset ofW consisting of all bypasses closed on RG. We shall name these bypasses closed
bypasses and corresponding words closed words. For example, if G is a scalar function
G(k) =

√
τ 2 − k2, letters a and b denote bypasses about τ and −τ , then the words ab,

abab, ba are closed, and the words a, b, aba are not closed.
A formal definition is as follows:

Definition 4 Word w is closed if

G(k){w} = G(k){e}.

The set of all closed words will be called Wc. Obviously, Wc is a subgroup of W .
For each word w define its class S(w) by the following property:

v ∈ S(w) iff G{w} = G{v}.

It is clear that the number of classes is equal to the number of sheets of G. All closed
words form the class S(e).

In this section we restrict our consideration to diffraction matrices. Let us formulate
several obvious properties of such matrices. First, for any two words v and w

G{wv} = G{vw}. (33)
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This follows from the fact that each square root in G has this property.
Second, if v is an arbitrary word, and w is a closed word, then

Pv{w} = Pv. (34)

This relation can be checked by combining (15) and (33).

5.2 Further reformulations of factorization problem

Consider a restriction of Problem 2 to the set Wc:

Problem 4 (bypass problem on closed words) Let G(k) be a diffraction matrix, and
Pw(k) be the set of corresponding bypass matrices. Find a function H+(k) having algebraic
growth at infinity, having only branch points of order 2 at k = τ±m, and obeying analytical
continuation formulae:

H+{w} = Pw(k) H+{e} (35)

for all words w ∈ Wc.

Note that function H+ is not necessarily analytical on the positive physical half-plane.
Although the condition of Problem 4 seems to be weaker than the condition of Prob-

lem 2, the following theorem states that a solution of Problem 2 can be obtained from
almost every solution of Problem 4 by the procedure of symmetrization:

Theorem 4 Let H+(k) be a solution of Problem 4. Let War be a (finite) set of words
w ∈ Wa, such that there is exactly one word in War belonging to each class S.
Construct function Q̄+(k) by the relation

Q̄+(k){w} =
∑

wj∈War

H+(k){wjw}. (36)

Function Q̄+ is either identically equal to zero or it is a solution of Problem 2 for Q+.

Proof: First, prove that the sum (36) obeys the condition

Q̄+{w} = Pw Q̄+{e} (37)

for any closed word w. Note that the values on the physical sheet of Q̄+ correspond to

Q̄+(k){e} =
∑

j

H+(k){wj}.

Consider the term H+{wjw} in (36). Construct a word wjww−1
j . Since G is a diffraction

matrix, wjww−1
j ∈ S(e) (see (33)).

Consider the value H+{wjww−1
j }. By the condition of the theorem

H+{wjww−1
j } = Pwjww

−1

j
H{e}. (38)
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Continue (38) along the contour wj:

H+{wjw} = Pwjww
−1

j
{wj}H{wj}. (39)

Using (16) and taking into account that Pwj
= I since w ∈ Wa, obtain that

Pwjww
−1

j
{wj} = PwjwP

−1
wj

= Pwjw. (40)

Again, by (16)
Pwjw = Pwj

{w}Pw = Pw. (41)

Substituting (41) into (39), we obtain

H+{wjw} = PwH{wj}. (42)

Performing summation over wj, obtain (37).
Next, note that function Q̄+ has no branch points in the positive physical half-plane,

since any bypass there leads to a permutation of the terms of r.-h.s. of (36). This means
that if Q̄+ is not identically equal to zero, it should be meromorphic on the positive
physical half-plane.

Finally, consider an arbitrary (not necessarily closed) word w. Find a word v ∈ Wa,
such that vw is a closed word. Since Q̄+ has no branch points on the positive physical
half-plane,

Q̄+{w} = Q̄+{vw}. (43)

According to (37),
Q̄+{vw} = Pvw Q̄+{e}, (44)

and due to (16),
Pvw = Pv{w}Pw = Pw. (45)

Combining (43), (44) and (45), we obtain

Q̄+{w} = Pw Q̄+{e}, (46)

which is the condition of the Problem 2. Theorem 4 is proved.
The following proposition states that bypass matrices of closed words form a repre-

sentation of Wc considered as a group.

Proposition 5 If a closed word w can be represented as a product of several closed
words vi

w = v1v2 . . . vn

then
Pw(k) = Pv1(k)Pv2(k) . . . Pvn

(k).

Proof: Use (16) and note that Pvj
(k){vj+1vj+2 . . . vn} = Pvj

(k) due to (34).
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Proposition 6 There exists a finite set (basis) of closed words B = {w̄} such that for
any closed word w there can be constructed a closed word v, such that

Pw = Pv,

and the word v can be represented as a product of several words of basis B:

v = w̄1w̄2 . . . w̄m.

This proposition can pe proved formally, however here we are not going to do this.
Instead, we can list all paths on RG, whose letter notations are the basis words.

Let the number of sheets of RG be equal to n. It is well known that a Riemann surface
cut along the elements of the canonical cross-section is a 1-connected area. There are n

points on this area corresponding to the infinities at each sheet. The basis paths are
the elements of the canonical cross-section and n− 1 bypasses about all infinities, except
one. A bypass about the nth infinity can be obtained as the combination of other basis
bypasses.

According to the Propositions 5 and 6, we can rewrite the bypass problem for closed
words as follows:

Problem 5 For a diffraction matrix G(k), a set of bypass matrices Pw corresponding to
this matrix, and the basis of closed words w̄1 . . . w̄m find a function H+(k) having algebraic
growth at infinity and obeying relation (35) for all basis words.

Note that now the relation (35) should be checked for a finite set of words only.

5.3 Hurd’s case

Definition 5 Let G(k) be a diffraction matrix, and Pw(k) be the set of bypass matrices.
Let for any k and for any different w1, w2 ∈ Wc be

[Pw1
(k), Pw2

(k)] = 0. (47)

Then we shall say that G possesses Hurd’s property.

Obviously, Hurd’s property can be checked only for basis words. Note also that if
relation (47) is fulfilled only closed words, then it is also fulfilled for all words.

If matrix G is commutative then Hurd’s property is fulfilled, but not necessarily vice
versa. However, as we shall show here, Hurd’s property enables one to apply some com-
mutative technique even if G is not commutative. The idea to study the analytical con-
tinuation of the solution and to investigate, whether the bypass matrices have structure
simpler than G, belongs to Hurd [6].

Hurd’s property is quite common, for example, if RG is a hyperelliptic surface, then
all bypass matrices are just powers of P = G−1

2 (k)G1(k), where G1 and G2 are values of
G on two different sheets of RG. It means, that bypass matrices (for the same affix k)
are commutating. Thus, all G with hyperelliptic RG belong to Hurd’s case.
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Let the eigenvectors of all Pw(k) 6= I be distinct almost everywhere. All matrices Pw

can be diagonalized simultaneously. Let all bypass matrices can be represented in the
form (30), where M(k) is now an algebraic matrix consisting of normalized eigenvectors
of P . Note that now the set of the columns of M does not necessarily remain unchanged
when the argument is carried over an arbitrary closed contour on C. However, the set of
columns remains unchanged when the rising of the contour to RG is closed.

Seek the solution H+ in a diagonalized form

H+(k) = M diag{h+
1 , . . . , h+

N}M−1. (48)

For the functions h+
n one can derive a problem similar to Problem 3:

Problem 6 Find N functions h+
1 , . . . , h+

N , growing algebraically at infinity, whose ana-
lytical continuations obey relation

(h+
m)c = pwc,m h+

πc(m). (49)

for any contour c, whose rising onto RG is closed.

This problem also can be treated by the methods of the theory of functions. A solution
of Problem 6 produces a solution of Problem 4, and can be transformed into a solution of
the initial factorization problem by symmetrization (36).

Although the matrix H+ provide a commutative solution of Problem 5, the matrices
Q± constructed by the relation (36) are not commutating.

6 Conclusion remarks

6.1 A short summary

The main results of this paper are as follows:

1. Formulae of analytical continuation are derived (Theorem 1).

2. Necessary condition of commutative factorization in the “check-up” form are proved
(Theorem 2).

3. Connection with the “Ansatz” (Jones’) form of the necessary condition is established
(Theorem 3); conditions of Jones’ theorem are refined.

4. Factorization problem is reformulated in the form of a bypass problem for closed
words (Theorem 4). It is shown that sometimes (in Hurd’s case) the commutative
methods can be applied to the bypass problem, even if the initial problem does not
admit commutative factorization.
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