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Abstract

The problem of diffraction on a strip or a slit is under consideration. A functional
equation of Wiener-Hopf type is derived; analytical restrictions are imposed on unknown
functions. The solution of functional problem (the spectrum of the scattered field) is
proved to be a solution of an ordinary differential equation (ODE) with rational coefficients
known up to several numerical constants. A nonlinear differential equation describing the
dependence of unknown constants on the width of the strip (slit) is derived. Connection
between the methods developed here and the solution in the form of Schwarzschild series
is established.

Introduction

The problem of diffraction of a plane wave on a strip (slit) with ideal boundary conditions has
been studied excessively since the 1950s. A number of analytical, semi-analytical, numerical
and approximate theories have been developed. We do not have the intention to present here
a review of these results. However, one can mention three main ways to treat the problem
analytically:
1. Separation of variables can be performed in elliptic coordinates. The solution is expressed
as a series of Mathieu functions (e.g. [1]). An interesting generalization of this method has
been proposed by Shinbrot in [2], where Mathieu-type equations are obtained for the problem
of diffraction on a set of several strips.
2. Physically clear results can be obtained using the series of successive diffractions of the wave
on the edges of the obstacle. For the slit problem this series has been studied by Schwarzschild
about 100 years ago [3]. Approximate results can be obtained using Keller’s GTD (Geometrical
Theory of Diffraction) approach [4, 5]. Results provided by GTD are valid for large width of
the strip (comparatively to the wavelength), but they found to be in a good agreement with
experimental data even if the width and the wavelength are of the same order. Numerous it-
erative and approximate procedures have been developed to solve the related integral equation
(see for example [6, 7, 8]). Some approximate methods were used for solving corresponding
Wiener-Hopf problem [9, 10].
3. Very interesting results have been obtained by Latta [11] and later by Williams [12]. They
studied integral equation related to diffraction problems and found that due to some specific
properties of the kernel the integral equation can be reduced to an ordinary differential equa-
tion. The independent variable for this equation is a spatial coordinate of the problem. Some
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particular cases of our results can be compared with [12], but here we develop a different
tecnique (also connected with ordinary differential equations).

Some other attempts to solve the problems of diffraction on a strip or a slit are discussed in
a detailed and emotional review by Luneburg [13]. A remarkable list of references in this work
must be mentioned.

In spite of a great number of papers, dedicated to the problem of diffraction on a strip, we
believe that we can present here some new analytical results. In brief, the idea of the paper is
following. Sommerfeld’s solution for diffraction on a half-plane is a simple algebraic function
of the spatial frequency k (or ϕ = arccos k/k0, if the angular spectrum is studied). Namely, if
the screen with Dirichlet condition is situated along the negative x half-axis, the incident field
is a plane wave with wave vector k0 normal to the screen and k is Fourier transform variable
associated with x, then Fourier transform of the solution can be written (up to a constant) in
the form [9]:

F (k) =
1

k
√

k0 − k
.

This function obeys a simple ordinary differential equation (ODE) of order 1:

F ′(k) +

(
1

k
+

1

2(k − k0)

)
F (k) = 0.

In this paper we show, that the solution of a slit or a strip problem obeys such equation of
order 2. Coefficients of the equation are rational functions.

Direct numerical or analytical calculation of the coefficients of the ODE is not simple because
of the nature of restrictions imposed on these coefficients. That is why we develop two indirect
techniques to study the coefficients. In Section 2 we construct the “evolution” equation (the
term by Williams), i.e., a nonlinear differential equation describing the dependence of unknown
parameters as functions of the width of the strip or a slit. The second method is the analysis
of successive diffractions on the edges of the strip or a slit (Schwarzschild series). This method
enables one to find approximate values of the coefficients of the ODE. Since the two methods
are independent, it is possible to compare numerical results provided by them.

1 Formulation of functional problem for diffraction on a

strip or a slit

1.1 Functional equation for diffraction on a strip

Consider a problem with mixed boundary conditions. Let the equation

∆u + k2
0u = 0 (1.1)

be satisfied by the function u(x, y) in the half-plane y > 0, −∞ < x < ∞. Time dependence
of all values is chosen as e−iωt, i.e. a plane wave propagating in the positive direction of x axis
has the form eik0x.

Boundary conditions are:

u(x, 0) = −e−ik∗x for − a < x < a. (1.2)
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and
∂u(x, 0)

∂y
= 0 for (−∞ < x < −a) ∪ (a < x < ∞). (1.3)

We suppose that there are no waves coming from infinity and no growing terms (the field
satisfies Sommerfeld radiation conditions at infinity). We also expect that the field and its
derivative possess known asymptotics near the edges points (−a, 0) and (a, 0); the asymptotics
are taken from the exact edge point solution arising from the problem of diffraction on a semi-
infinite screen.

The problem (1.1), (1.2), (1.3) is equivalent to the problem of diffraction on an infinite
strip (a segment in 2D cross-section). The incident field is a plane wave coming at the angle
ψ to y-axis, such that k∗ = k0 sin ψ. Points (−a, 0) and (a, 0) are the edges of the strip. One
can note, that (1.1), (1.2), (1.3) corresponds to the symmetrical part of diffractional problem
(antisymmetric part is trivial).

The field can be presented in the form of Fourier integral

u(x, y) = − 1

2π

∫

C

Ŵ (k)e−ikx+i
√

k2
0−k2ydk, (1.4)

where the contour C of integration coincides with the real axis everywhere except in the neigh-
borhood of the points ±k0. It passes below the branch point k0 and above the point −k0 (we
shall show below that Ŵ has no other singularities). The value of the square root is chosen to
be positive on the segment (−k0, k0).

Representation (1.4) can be used for calculation of y−derivative of the field on x−axis.

∂u(x, 0)

∂y
= − i

2π

∞∫

−∞

√
k2

0 − k2Ŵ (k)e−ikx+i
√

k2
0−k2ydk. (1.5)

Fourier transforming to (1.5) and taking into account (1.3), we obtain

Ŵ (k) =
i√

k2
0 − k2

a∫

−a

∂u(x, 0)

∂y
eikxdx. (1.6)

From another point of view, function Ŵ (k) can be presented in the form of Fourier integral of
u(x, 0)

Ŵ (k) = −
∞∫

−∞

u(x, 0)eikxdx.

The path of integration can be split into 3 parts: (−∞,−a), (−a, a) and (a,∞). Taking into
account (1.2), we obtain the functional equation

Û+(k) + Û−(k) + Ŵ (k) = 0, (1.7)

where

Û+(k) =

∞∫

a

u(x, 0)eikxdx +
iei(k−k∗)a

k − k∗
, (1.8)
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Û−(k) =

−a∫

−∞

u(x, 0)eikxdx− ie−i(k−k∗)a

k − k∗
. (1.9)

A similar equation has been obtained in [9].

1.2 Functional equation for diffraction on a slit

The problem of diffraction on a slit is a bit more difficult. In addition to the incident and the
diffracted field, one must take into account the reflected field. For the diffracted field we have
boundary conditions

∂u(x, 0)

∂y
= −e−ik∗x for − a < x < a. (1.10)

and
u(x, 0) = 0 for (−∞ < x < −a) ∪ (a < x < ∞). (1.11)

Applying Fourier transformation (see previous subsection), we again obtain the functional
equation

Ū+(k) + Ū−(k) + W̄ (k) = 0, (1.12)

where now

W̄ (k) =

a∫

−a

u(x, 0)eikxdx, (1.13)

Ū+(k) =
i√

k2
0 − k2

∞∫

a

∂u(x, 0)

∂y
eikxdx− 1√

k2
0 − k2

eia(k−k∗)

k − k∗
, (1.14)

Ū−(k) =
i√

k2
0 − k2

−a∫

−∞

∂u(x, 0)

∂y
eikxdx +

1√
k2

0 − k2

e−ia(k−k∗)

k − k∗
. (1.15)

1.3 Analytic properties of unknown functions

Consider the problem of diffraction on a strip. Let k be a complex variable. Equation (1.7)
contains three unknown functions Û+, Û− and Ŵ . In this subsection we shall find the properties
of these functions, such that no other information will be necessary to solve the problem.
Namely, we shall find some asymptotics at infinity and at singular points k∗ and ±k0.

Functions

Û+(k)− iei(k−k∗)a

k − k∗
, Û−(k) +

ie−i(k−k∗)a

k − k∗
, and

√
k2

0 − k2Ŵ (k)

are Fourier integrals; integration is performed along half-lines or a segment (see (1.8), (1.9),
(1.6)). The following properties are known for such functions [9]:
a) Û+(k)− iei(k−k∗)a/(k − k∗) is defined and has no singularities in the upper half-plane k;
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b) Û−(k) + ie−i(k−k∗)a/(k − k∗) is defined and has no singularities in the lower half-plane;
c)

√
k2

0 − k2Ŵ (k) is an entire function of k.
The upper half-plane is the part of complex plane lying above the contour C and the lower

half-plane is the part below C. Note that k0 belongs to the upper half-plane and −k0 belongs
to the lower-half plane. The behavior of unknown functions at ±k0 is very important, because
as we will see below, unknown functions have no other branch points. Thus, Û+(k) is a regular
function at k = k0 and Û−(k) is a regular function at k = −k0.

Note that similar conclusions concerning the location of the points ±k0 can be made if
we suppose that k0 has a small positive imaginary part, corresponding to the dissipation in
the medium. Although now we don’t need the artificial dissipation, below it will be used for
establishing the asymptotic properties of Schwarzchild’s series.

We will say that function F (k) changes its sign at some point k = k1, if F (k) can be
represented in the vicinity of this point as a series convergent for some 0 < |k − k1| < δ:

F (k) = (k − k1)
1/2

∞∑
n=m

an(k − k1)
n,

where m is an integer (in this paper m is equal to 0 or −1). In other words, function (k −
k1)

1/2F (k) is either regular at k = k1 or has a pole at this point. One can see, that Ŵ (k)
changes its sign at ±k0.

Note also that there are no waves coming from the infinity, therefore Û+(k) has no singular-
ities on the positive real half-axis and Û−(k) has no singularities on the negative real half-axis.
The only exception is the point k = k∗, where both functions have a simple pole with known
residues.

1.4 Growth of unknown functions at infinity

According to the exact solution of the Sommerfeld problem (diffraction on a semi-infinite screen
[9]), we are looking for the functions Û+(k), Û−(k), Ŵ (k) with the following asymptotics as
|k| → ∞ in the upper and lower half-planes:

Û+(k) ∼ eika

k3/2
for Im[k] > 0,

Û−(k) ∼ e−ika

k3/2
for Im[k] < 0,

(1.16)

Ŵ (k) ∼ e−ika

k3/2
for Im[k] > 0,

Ŵ (k) ∼ eika

k3/2
for Im[k] < 0,

These asymptotics can be illustrated as follows. Let r and φ be local polar coordinates
in the proximity of the point x = a and let the direction φ = 0 correspond to the negative
x direction. Then the total field (the incident plane wave plus the scattered field u) can be
represented as a series of Bessel functions

utot(r, φ) =
∞∑

n=1

αnJn/2(k0r) sin(nφ/2).
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This representation leads to (1.16).
Another (Meixner’s) argument takes into account the energy flow from the edges of the strip

and also yields (1.16).

1.5 Analytic continuation of functions Û+ and Û−
Functions Û+, Û− and Ŵ can be analytically continued onto their Riemann surfaces. Let us
introduce a new independent variable

β = arccos(k/k0) (1.17)

and study the properties of Û+, Û− and Ŵ as functions of β
The definitions (1.8) and (1.9) can be directly applied for k such that Im[k] ≥ 0 and

Im[k] ≤ 0 respectively. This corresponds to the regions I and II shown in Fig. 1a. The
particular shape of their boundaries depends on the imaginary part of k0. The definition (1.6)
is valid on the whole β-plane.

Figure 1: a) regions in β-plane, corresponding to Im[k] ≥ 0 and Im[k] ≤ 0; b) transformation
in k-plane, corresponding to β → β + 2π.

Using the functional equation (1.7), one can continue Û+(β) into the region II and Û−(β)
into the region I, setting

Û− = −Û+ − Ŵ for β ∈ I, Û+ = −Û− − Ŵ for β ∈ II.

The regularity of Û+(k) at k0 and of Û−(k) at −k0 can be expressed as

Û+(−β) = Û+(β). (1.18)

Û−(2π − β) = Û−(β). (1.19)

Function Ŵ (k) changes its sign at ±k0, so

Ŵ (β) = −Ŵ (−β) = Ŵ (2π + β). (1.20)
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Continuing the identities (1.17)–(1.19) and functional equation (1.7), we obtain that

Û+(2π − β) = −Û−(2π − β)− Ŵ (2π − β) = −Û−(β) + Ŵ (β) = Û+(β) + 2Ŵ (β). (1.21)

Combining the last identity with (1.18) and (1.20), we obtain

Û+(β + 2π) = Û+(β)− 2Ŵ (β). (1.22)

Similar reasoning gives
Û−(β + 2π) = Û−(β) + 2Ŵ (β). (1.23)

Equations (1.22), (1.23) enable one to continue functions Û+ and Û− to the whole β-plane.
Let us return to the variable k. The transformation β → β + 2π corresponds to the bypass

of infinity in k plane arg k → arg k + 2π, shown in Fig. 1b. Bold lines correspond to branch
cuts.

It is useful to rewrite (1.22), (1.23) and (1.20) in the form

Û+(ke2πi) = Û+(k)− 2Ŵ (k),

Û−(ke2πi) = Û−(k) + 2Ŵ (k), (1.24)

Ŵ (ke2πi) = Ŵ (k).

As it follows from (1.24), the values of Û+(k) on different sheets of its Riemann surface
differ by the value 2nŴ . Therefore, there are no other singularities except k∗ and ±k0 on the
whole Riemann surface.

Now we can formulate a functional problem that will be considered below.
We seek functions Û+(k), Û−(k), Ŵ (k), such that
1. equation (1.7) is valid;
2. Û+(k), Û−(k), Ŵ (k) have no singularities except ±k0, k∗ and infinity;
3. Û+ is regular at k0 on the physical sheet; Û− is regular at −k0 on the physical sheet; Ŵ
changes its sign at ±k0;
4. Û+ has the residue equal to i at k∗, Û− has the residue equal to −i at k∗;
5. Asymptotics (1.16) are valid.

Similar properties can be easily established for the functions Ū−, Ū+, W̄ , related to the slit
problem. One must substitute everywhere ”changes sign” by ”regular” and vice versa.

2 Ordinary differential equation associated with the func-

tional equation

2.1 An analogy with the cylindrical functions

To make clear the subsequent analysis, in this subsection we will draw an analogy of the
functional problem formulated above with the theory of cylindrical functions. Consider as an
example a set of Bessel and Hankel functions J0(ka), H

(1)
0 (ka) and H

(2)
0 (ka). These functions

are considered as the functions of k (a is a constant). The listed functions are the analogues of
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functions Ŵ (k), Û+(k) and Û−(k) respectively. The following properties should be mentioned:
1. Three cylindrical functions obey the relation

H
(1)
0 (ka) + H

(2)
0 (ka)− 2J0(ka) = 0. (2.1)

This equation is the analog of (1.7).
2. The following asymptotics are known as |k| → ∞:

H
(1)
0 (ka) ∼ eika

k1/2
for Im[k] > 0,

H
(2)
0 (ka) ∼ e−ika

k1/2
for Im[k] < 0,

(2.2)

J0(ka) ∼ e−ika

k1/2
for Im[k] > 0,

J0(ka) ∼ eika

k1/2
for Im[k] < 0.

These estimations are analogous to (1.16).
3. Cylindrical functions have branch points at k = 0 and ∞. The following properties are valid

H
(1)
0 (kae2πi) = H

(1)
0 (ka)− 2J0(ka),

H
(2)
0 (kae2πi) = H

(2)
0 (ka) + 2J0(ka), (2.3)

J0(kae2πi) = J0(ka).

These properties are analogous to (1.24).
Cylindrical functions are the solutions of Bessel equation, which is a confluent hypergeo-

metric equation with one regular singularity k = 0 and one irregular singularity k = ∞. The
features listed above are not specific properties of cylindrical functions, but they are peculiar
to the solutions of an ordinary differential equation of rather general kind (see [14]). Below we
look for such equation for the set Û+(k), Û−(k) and Ŵ (k).

2.2 Ordinary differential equation for Û+(k), Û−(k) and Ŵ (k)

Theorem 1 Functions Û+(k), Û−(k) and Ŵ (k) obey the equation (later it will be named the
ODE):

V ′′(k)− f(k)V ′(k)− g(k)V (k) = 0, (2.4)

where prime corresponds to the differentiation with respect to k. Functions f(k) and g(k) are
the ratios of the polynomials of prescribed order.

It is obvious that if two functions obey the equation, then the third obeys it due to (1.7).
One can find a differential equation, such that two arbitrary functions obey it. For example

let Û+(k) and Ŵ (k) be such functions. Then the pair of equations is valid:

f(k)Û ′
+(k) + g(k)Û+(k) = Û ′′

+(k),
(2.5)

f(k)Ŵ ′(k) + g(k)Ŵ (k) = Ŵ ′′(k).
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This set can be interpreted as a system of linear algebraic equations with respect to f(k) and
g(k). Its solution is following

f(k) =
D′(k)

D(k)
, (2.6)

g(k) =
E(k)

D(k)
, (2.7)

where D(k) and E(k) are the determinants

D(k) =

∣∣∣∣
Û ′

+(k), Û+(k)

Ŵ ′(k), Ŵ (k)

∣∣∣∣ , (2.8)

E(k) =

∣∣∣∣
Û ′

+(k), Û ′′
+(k)

Ŵ ′(k), Ŵ ′′(k)

∣∣∣∣ . (2.9)

Note that

D′(k) =

∣∣∣∣
Û ′′

+(k), Û+(k)

Ŵ ′′(k), Ŵ (k)

∣∣∣∣ .

Study the properties of the determinants D(k) and E(k). First note, that each determinant
can be written in two different forms. Using equation (1.7) and the properties of determinants,
we obtain

D =

∣∣∣∣
Û ′

+, Û+

Ŵ ′, Ŵ

∣∣∣∣ =

∣∣∣∣
−Ŵ ′ − Û ′

−, −Ŵ − Û−
Ŵ ′, Ŵ

∣∣∣∣ = −
∣∣∣∣

Û ′
−, Û−

Ŵ ′, Ŵ

∣∣∣∣ , (2.10)

E =

∣∣∣∣
Û ′

+, Û ′′
+

Ŵ ′, Ŵ ′′

∣∣∣∣ =

∣∣∣∣
−Ŵ ′ − Û ′

+, −Ŵ ′′ − Û ′′
+

Ŵ ′, Ŵ ′′

∣∣∣∣ = −
∣∣∣∣

Û ′
−, Û ′′

−
Ŵ ′, Ŵ ′′

∣∣∣∣ , (2.11)

i.e. each determinant can be expressed in terms of either the pair (Û+, Ŵ ) (the first repre-
sentation) or the pair (Û−, Ŵ ) (the second representation). We shall use the first pair to
study the properties of D and E in the upper half-plane of k, and the second one to study the
determinants in the lower half-plane.

Consider the determinant D(k). In the upper half plane of the argument it grows as ∼
O(k−3) due to the first representation and asymptotics (1.16). It has the same order of growth
in the lower half plane due to the second representation. Besides, D(k) changes its sign at the
point k0 (Û+ is regular and Ŵ changes its sign). Also, D(k) changes its sign at −k0 due to the
second representation. Since there are no other branch points, the function

√
k2

0 − k2D(k) is
single-valued on the whole complex plane.

As it follows from the definition of functions Û+, Û− and Ŵ , function
√

k2
0 − k2D(k) has

some singularities on the complex plane. It has the pole of second order at k = k∗ and simple
poles at the points k0 and −k0. No other singularities can appear. Taking into account the
order of growth of the function D(k) and applying Liouville theorem, we conclude that

D(k) =
P (k)

(k2 − k2
0)

3/2(k − k∗)2
, (2.12)

where P (k) is a polynomial of degree 2, whose coefficients depend on k0, a and k∗.
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Similar reasoning yields to the following representation for E(k):

E(k) =
Q(k)

(k2 − k2
0)

5/2(k − k∗)3
, (2.13)

where Q(k) is a polynomial of degree 5. Note that the ratios (2.6) and (2.7) do not contain
radicals. Theorem 1 is proven.

Note that we implicitly used relations (1.22) and (1.23) in the argument performed above.
It is convenient to express the numerator of (2.12) in the form

P (k) = M(k − λ1)(k − λ2), (2.14)

where λ1 and λ2 are the roots of the polynomial P (k). In general case λ1 6= λ2. As it follows
from (2.6) and (2.12), one can write f(k) in the form

f(k) =
1

k − λ1

+
1

k − λ2

− 2

k − k∗
− 3k

k2 − k2
0

. (2.15)

Using (2.7) and (2.13), we obtain

g(k) =
Q(k)/M

(k − λ1)(k − λ2)(k2 − k2
0)(k − k∗)

. (2.16)

Theorem 1 can be compared with the results of Williams [12]. Using a quite different
method he obtained a differential equation of the type (2.4) for the particular case of tangential
incidence (i.e. k∗ = ±k0). However, the result proven above for arbitrary k∗ cannot be obtained
directly from [12] and the links between two methods are unclear, as yet.

2.3 Restrictions on unknown parameters

Note that f(k) and g(k) are the rational functions of k, which are known up to 8 constant
parameters. There are 9 unknown coefficients of the polynomials P (k) and Q(k), but the
leading coefficient of P can be chosen arbitrarily, since f(k) and g(k) involve the ratios of the
polynomials.

We must chose functions f(k) and g(k), such that functions Û+, Û− and Ŵ possessing
known properties can be chosen among the solutions of the ODE (2.4). The ODE has 6 singular
points: infinity, k∗, ±k0, λ1 and λ2. We should demand that the ODE has two solutions with
prescribed asymptotics at each singular point and, besides, these asymptotics match, i.e. for
example Ŵ (k) has one prescribed asymptotic at ∞, another at k0 etc. Therefore, two types
of the restrictions can be posed: ”local” and ”global” ones. For local restriction it is enough
to study the coefficients near the singular point. The procedure of investigation of each point
is standard [14]. The coefficients f(k) and g(k) are expanded as power series and two linearly
independent solutions of known anzats are substituted in the equation. A recurrent set of
relations can be obtained for each solution, and for some specific term the relation degenerates
to the restriction on the coefficients. Local restrictions are discussed below.
a.1. Consider the behavior of the functions Û+, Û− and Ŵ at infinity (1.16). Follow the
standard procedure to investigate the singular points of ODE [14]. Let the coefficients of the
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equation be expanded as power series at infinity:

f(k) =
∞∑

n=1

f∞n
kn

= −3

k
+ . . . , g(k) =

∞∑
n=0

g∞n
kn

(2.17)

Infinity is the irregular point of the ODE, so two linearly independent solutions can be found
in the form

V1,2(k) ∼ kµ1,2ekη1,2 .

Substituting this anzats into (2.17) and taking into account that according to (1.16), µ1,2 =
−3/2, η1,2 = ±ia, we find that

g∞0 = −a2, (2.18)

g∞1 = 0. (2.19)

Note that g0 and g1 depend on the coefficients of the polynomials P (k) and Q(k). Therefore,
(2.18) and (2.19) are the restrictions on unknown constants.
a.2. Consider the behavior of the solutions near the point k = k∗. The exponents of this point
are 0 and -1. Their difference is integer. As it follows from the elementary theory of differential
equations [14], in general case the fundamental solution with exponent 0 can contain logarithmic
terms. However, we are sure that function Ŵ has no logarithmic terms. So we must impose
special restrictions on the coefficients of the equation to exclude logarithmic terms.

Let the following expansions be valid near k∗:

f(k) =
1

k − k∗

∞∑
n=0

f ∗n(k − k∗)n,

(2.20)

g(k) =
1

(k − k∗)2

∞∑
n=1

g∗n(k − k∗)n.

There are two linearly independent solutions near the point k = k∗. They are, for example,

Ŵ (k) ∼
∞∑

n=0

w∗
n(k − k∗)n, Û+(k) ∼

∞∑
n=−1

u∗n(k − k∗)n. (2.21)

Substitute (2.21) for Û+ and expand the ODE as power series in k − k∗. Coefficicent at
(k − k∗)−3 is identically equal to zero. At (k − k∗)−2 we obtain the restriction

g∗1 = f ∗1 . (2.22)

a.3. Points k = λ1,2 are the poles of the function f(k), so they are the singular points of
the differential equation. Consider the point λ1. Its exponents are 0 and 2. Let the following
expansions be valid near k = λ1:

f(k) =
1

k − λ1

∞∑
n=0

fn(k − λ1)
n, g(k) =

1

(k − λ1)2

∞∑
n=1

gn(k − λ1)
n. (2.23)

11



Substituting power series for linearly independent solutions and expanding the equation as
power series in k − λ1 we find that

g2 − g1(f1 + g1) = 0, (2.24)

Equation (2.24) is a restriction on the coefficients of P (k) and Q(k). Another restriction of the
same kind can be obtained for the point λ2.

If λ1 = λ2, then only one restriction can be obtained, but there is one less unknown param-
eter.

So there are 5 local restrictions for 8 parameters.
Local restrictions can be easily taken into account. For example, consider the case of normal

incidence (k∗ = 0). Due to the symmetry of the problem, λ1 = −λ2 = λ. Due to (2.22), g∗1 = 0
and the ODE can be written in the form

V ′′(k) +

[
2

k
− 2k

k2 − λ2
+

3k

k2 − k2
0

]
V ′(k) +

[
a2 − X

k2 − λ2
− Y

k2 − k2
0

]
V (k) = 0, (2.25)

where λ, X and Y are unknown numerical parameters depending on a.
Restriction (2.24) leads to the relation between these three parameters:

4λ2Y + 2(4λ2 − k2
0)X + (X2 + 4a2λ2)(k2

0 − λ2) = 0. (2.26)

Thus, if we find λ and X, then we can calculate Y from (2.26).
Equation (2.25) was obtained for the strip problem. It can be shown, however, that the

slit problem leads to the same equation. Relation (2.26) also remains unchanged. Only the
parameters X and λ are different from those of the strip problem.

If the parameters obey the restrictions formulated above, then at each singular point there
is a pair of solutions with required expansion. One must belong to Ŵ (k), another — to Û+(k)
or Û−(k). But there is no warranty that all asymptotics (at different singular points), that
must belong for example to Ŵ (k) actually belong to one solution of ODE. So one must build
solutions of ODE along the lines connecting singular points and check whether asymptotic
expansions match at the ends of the lines.

Take the polynomials P (k) and Q(k) satisfying only the local restrictions Consider the point
k = k0. Near this point one can choose 2 linearly independent solutions V1(k) and V2(k) of
ODE (2.4), such that

V1(k) = ϕ1(k − k0),

V2(k) =
ϕ2(k − k0)√

k − k0

,

where ϕ1 and ϕ2 are regular at zero.
If the polynomials P (k) and Q(k) are chosen correctly, then V1(k) is proportional to Û+(k)

and V2(k) is proportional to Ŵ (k). The following properties must be valid for V1 and V2

b.1. Function V1(k) can be presented at infinity in the upper half plane as a sum of exponen-
tially decaying and growing functions:

V1(k) = A0e
iakk−3/2(1 + a1k

−1 + a2k
−2 + . . .) + B0e

−iakk−3/2(1 + b1k
−1 + b2k

−2 + . . .).

12



Taking into account the asymptotics (1.16), we insist that

B0 = 0. (2.27)

This condition can be checked only numerically.
Note that it is not necessary to formulate a similar condition for k = −k0. A detailed

analysis (see [14]) shows that it follows from the condition for k = k0 formulated above.
b.2. Consider the second solution V2. Near the point k = −k0 function V2 can be presented in
the form

V2(k) = ϕ3(k + k0) +
ϕ4(k + k0)√

k + k0

,

where ϕ3 and ϕ4 are regular at zero. One must demand that

ϕ3 ≡ 0. (2.28)

b.3. Consider the solution V2. In the vicinity of the point k = k∗ it can be presented in the
form

V2(k) =
A1

k − k∗
+ ϕ5(k − k∗).

We must demand that
A1 = 0. (2.29)

Thus, there are 3 global restrictions for obtaining unknown parameters. Unfortunately,
there is no effective direct numerical or analytical procedure known to find the parameters
satisfying these global restrictions. In two following sections we develop some indirect methods
to study the coefficients of the ODE.

3 Evolution equation for the coefficients of the ODE

3.1 Evolution equation in matrix form

Let the width of the strip a be a variable. Coefficients of the ODE (2.4) are now the functions
of two variables: f(k, a) and g(k, a). In the previous section we discussed the properties of f
and g as functions of k. Here we shall discuss the behaviour of f and g in a. For the simplicity,
we perform the detailed calculations only for the case of normal incidence (2.25).

Note, that the restrictions (both local and global) on the coefficients of the ODE, listed in
the previous section, are named monodromy data of the equation. Whilst parameter a varies,
monodromy data must remain unchanged. Such deformations of the coefficients of ODEs are
well-studied. So-called Slezinger equation describes the monodromy preserving deformations of
Fuchsian equation. For our case a similar theory was developed in [15]. However, the theory in
[15] is described in a very formal manner, so here we are going to translate it into the language
of our particular applied problem.

Below we derive a general form of evolution equation and then consider a particular case
of normal incidence. The result of this section is a system of nonlinear ordinary differential
equations for X(a) and λ(a), where X and λ are the parameters of equation (2.25).
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First of all, let us rewrite (2.4) in matrix form. Denote by Û+, Û− and Ŵ the vectors

Û+ =

(
Û+

Û ′
+

)
, Û− =

(
Û−
Û ′
−

)
, Ŵ =

(
Ŵ

Ŵ ′

)
, (3.1)

where prime corresponds to differentiation with respect to k.
Equation (2.4) can be rewritten in the form

∂

∂k
V = KV, (3.2)

where V stands for Û+, Û− or Ŵ and

K =

(
0 1
g f

)
.

Theorem 2 There exists matrix A depending on k and a, such that

∂

∂a
V = AV (3.3)

for V equal to Û+, Û− or Ŵ. The elements of A are rational functions of k. The following
evolution equation is valid

∂

∂a
K− ∂

∂k
A + (KA−AK) = 0. (3.4)

Denote the elements of A by

A =

(
A11 A12

A21 A22

)
.

Note, that if equation (3.3) is valid for two functions (say, for V = Û+ and Ŵ), then it is
valid for the third function Û− due to (1.7). Substitute Û+ and Ŵ into (3.3) and obtain four
equations

(Û+)a = A11Û+ + A12Û
′
+,

(Û ′
+)a = A21Û+ + A22Û

′
+,

Ŵa = A11Ŵ + A12Ŵ
′,

(Ŵ ′)a = A21Ŵ + A22Ŵ
′,

where index a denotes the differentiation with respect to a. This set can be interpreted as two
systems of linear algebraic equations with respect to Aij. The solution can be written in the
form

A11 = C1/D,

A12 = H/D,
(3.5)

A21 = C3/D,

A22 = C4/D,

14



where D is the determinant defined by (2.8),

C1 =

∣∣∣∣
Û ′

+ (Û+)a

Ŵ ′ Ŵa

∣∣∣∣ = −
∣∣∣∣

Û ′
− (Û−)a

Ŵ ′ Ŵa

∣∣∣∣ , (3.6)

H =

∣∣∣∣
(Û+)a Û+

Ŵa Ŵ

∣∣∣∣ = −
∣∣∣∣

(Û−)a Û−
Ŵa Ŵ

∣∣∣∣ , (3.7)

C3 =

∣∣∣∣
Û ′

+ (Û ′
+)a

Ŵ ′ (Ŵ ′)a

∣∣∣∣ = −
∣∣∣∣

Û ′
− (Û ′

−)a

Ŵ ′ (Ŵ ′)a

∣∣∣∣ , (3.8)

C4 =

∣∣∣∣
(Û ′

+)a Û+

(Ŵ ′)a Ŵ

∣∣∣∣ = −
∣∣∣∣

(Û ′
−)a Û−

(Ŵ ′)a Ŵ

∣∣∣∣ . (3.9)

Now we are going to apply to the determinants (3.6) – (3.9) the same method that was
applied in the previous section to the determinants D and E. Note, that we again have two
representations for each determinant.

The derivatives (Û+)a, (Û−)a and (Ŵ )a have asymptotics at k →∞ of the type
∼ k−1/2 exp±iak. It is obvious that differentiation with respect to a leaves the conditions of
regularity unchanged, for example (Û+)a is regular at k = k0 and Ŵa changes its sign at this
point. Therefore, we can repeat the argument from the proof of Theorem 1. Namely, each
determinant has two branch points: k = ±k0. The determinants change their signs at ±k0.
Functions (Û+)a, (Û−)a have simple poles at k = k∗ Moreover, the determinants have algebraic
growth at infinity. Applying Liouville theorem, we conclude that

√
k2

0 − k2Cj and
√

k2
0 − k2H

are rational functions of k.
Here we implicitly used the preserving of monodromy data. In the opposite case it is

impossible to find the solutions of the ODE possessing the required properties at the singular
points simultaneously.

Calculate the value of (V′)a from (3.2) and (3.3):

∂

∂a

(
∂

∂k
V

)
=

(
∂

∂a
K

)
V + K

∂

∂a
V =

(
∂

∂a
K

)
V + KAV,

∂

∂k

(
∂

∂a
V

)
=

(
∂

∂k
A

)
V + A

∂

∂k
V =

(
∂

∂k
A

)
V + AKV.

Two last relations are valid for two linearly independent V at almost each point (k, a). There-
fore, they are valid for the matrices themselves. Combining these relations, we obtain (3.4).

3.2 Scalar form of evolution equation

One can suppose that equation (3.4) is useless because it contains 4 new unknown functions
in addition to D and E. However, below we show that functions Cj and H can be easily
calculated. Now we will express Cj by H, D and E and later find H using Liouville theorem.

Suppose that the determinant H(k, a) is a known function (we shall calculate it below).
Consider the definitions (3.6), (3.7), (3.8) and (2.8). Note that

∂H(k, a)

∂k
= C4(k, a)− C1(k, a). (3.10)
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On the other hand,
∂D(k, a)

∂a
= C1(k, a) + C4(k, a). (3.11)

Therefore

C1(k, a) =
1

2

(
∂D(k, a)

∂a
− ∂H(k, a)

∂k

)
, (3.12)

C4(k, a) =
1

2

(
∂D(k, a)

∂a
+

∂H(k, a)

∂k

)
. (3.13)

Now consider the definition (3.8). Note that

∂C1

∂k
= C3 +

∣∣∣∣
Û ′′

+ (Û+)a

Ŵ ′′ (Ŵ )a

∣∣∣∣ =

C3 + f

∣∣∣∣
Û ′

+ (Û+)a

Ŵ ′ (Ŵ )a

∣∣∣∣ + g

∣∣∣∣
Û+ (Û+)a

Ŵ (Ŵ )a

∣∣∣∣ = C3 + fC1 − gH. (3.14)

Therefore

C3 =
1

2

(
∂2D

∂k∂a
− ∂2H

∂k2

)
− 1

2D

∂D

∂k

(
∂D

∂a
− ∂H

∂k

)
+

EH

D
. (3.15)

Substitute (3.10), (3.12), (3.13) and (3.15) into the left-hand side of (3.4). Three elements
of resulting matrix are identically equal to zero, and the fourth leads to the equation

(
E

D

)

a

−
(

EH2

D3

)′
D

H
+

D

2

(
1

D

(
H ′ −Da

D

)′)′
= 0, (3.16)

where prime denotes partial differentiation with respect to k and index a denotes partial dif-
ferentiation with respect to a.

Equation (3.16) is the scalar form of evolution equation (3.4).
Now we return to the calculation of H(k, a). Note that (k2−k2

0)
1/2H(k, a) has the following

properties as a function of k: it grows as k−1 at infinity, it has a simple pole at k = k∗ and it
is regular at k = ±k0. All these properties follow from the properties of the elements of the
determinant (3.7). There are no singular points except k = k∗, therefore (k2 − k2

0)
1/2H(k, a) is

equal to 1/(k − k∗) multiplied by a constant, depending on a. This constant can be calculated
comparing the behavior of D and H as k → ∞. From (2.12) and (2.14), at infinity D(k) ∼
Mk−3. Let the following estimations be valid in the upper half-plane of k:

Û+ ∼ αk−3/2eika, Ŵ ∼ βk−3/2e−ika.

Then
M = 2αβia.

On the other hand, at infinity
H ∼ 2αβik−2.

Comparing last relations, we obtain

H(k, a) =
M

a

1

(k − k∗)(k2 − k2
0)

1/2
. (3.17)
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Now H can be substituted in (3.16) and evolution equation, containing only the coefficients
of the polynomials P and Q can be obtained. However, in general case the calculations are
rather tedious, so here we study only the case of normal incidence k∗ = 0.

Substitute (3.17) into (3.16). The left-hand side of (3.16) is a rational function of k and we
should find such functions X(a), Y (a), λ(a), that tthe l.-h.s. of (3.16) is equal to zero for each
k. We find the decomposition of the l.-h.s. of (3.16) into the partial fractions. The numerators
of the partial fractions do not depend on k. These numerators must be equal to zero separately.
After some algebraic manipulations, we obtain that (3.16) is fulfilled identically if and only if
the relation (2.26) is valid and, besides

dλ

da
=

2λ2 − k2
0 + (k2

0 − λ2)X

2aλ
, (3.18)

dX

da
=

4a2λ4 + k2
0(X − 2)X

2aλ2
, (3.19)

Now it is not necessary to find λ and X for each a from a complicated numerical procedure
based on the verification of monodromy data. One can calculate λ and X for any specific a = a0,
solve nonlinear differential equations (3.18, 3.19) using λ(a0) and X(a0) as initial conditions
and obtain λ and X for any a. Parameter Y then can be found from (2.26).

3.3 Some properties of evolution equations

In this subsection we shall study equations (3.4), (3.16) and (3.18, 3.19) as a particular case of
(3.16).

Note the following features of evolution equations:
1. Equations (3.4) and (3.16) remain valid if parameter a is replaced by another parameter of
the problem (say, k∗). In this case one must find a new formula for H(k, k∗) instead of (3.17).
Namely, a simple calculation yields

H(k, k∗) =
M(k∗ − λ1)(k∗ − λ2)

(k2
0 − k2∗)(k2 − k2

0)
1/2(k − k0)2

. (3.20)

This formula can be substituted into (3.16) and new evolution equation can be obtained. This
equation will describe the behaviour of the coefficients of the polynomials P (k) and Q(k) as
functions of k∗. In this paper we are not going to perform these calculations. However, we
should state, that the procedure of derivation of evolution equations can be performed with
respect to any parameter of the problem.
2. In our proof of Theorem 2 we use the fact, that there are two solutions of the ODE (say,
Û+ and Û−) that for each a have the following properties: Û+ is a fundamental solution at k0,
Û− is a fundamental solution at −k0, and their linear combination with constant coefficients
(namely, Ŵ ) is a fundamental solution at ±k0. Besides, Û+ and Û− are decaying as k → ±i∞
respectively. The particular asymptotics of Û+ and Û− at singular points and the values of
the coefficients are not important. Therefore, the same proof is valid for the functions Ū−,
Ū+. Moreover, H(k, a) is given by (3.17), and equations (3.18, 3.19) are valid for the slit
problem. System (3.18, 3.19) has the solutions, corresponding to the strip and slit problems.
For each problem one must find correct initial conditions. More detailed study of the validity
of Theorem 2 can be found in [15].
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3. Consider the strip problem with normal incidence for large k0a. As it is known, in this case
the scattered field can be approximately represented as a sum of the fields, diffracted by the
edges of the strip, i.e. a sum of two Sommerfeld’s solutions. The field diffracted from the right
edge of the strip is described by the function (see [9])

Û0
+(k) =

ieika
√

k0

k
√

k0 + k
, (3.21)

and from the left edge by the function

Û0
−(k) = − ie−ika

√
k0

k
√

k0 − k
. (3.22)

Find an ODE such that functions Û0
± obey it. It is easy to note that this equation has the

form (2.4) with the coefficients f = D′
0/D0, g = E0/D0, where

D0 =

∣∣∣∣
(Û0

−)′, Û0
−

(Û0
+)′, Û0

+

∣∣∣∣ = k0
k0 + 2ia(k2 − k2

0)

k2(k2
0 − k2)3/2

, (3.23)

E0 =

∣∣∣∣
(Û0

−)′, (Û0
−)′′

(Û0
+)′, (Û0

+)′′

∣∣∣∣ =

k0
15k0 + 6ia(k2 − 3k2

0) + 12a2k0(k
2 − k2

0) + 8ia3(k2 − k2
0)

2

4k2(k2
0 − k2)5/2

. (3.24)

The last expressions exactly match the anzats (2.12, 2.13).
Substituting (3.21, 3.22) into (2.25), we obtain equation of the form (2.25) with λ = λ0,

X = X0, Y = Y0, where

λ0(a) =

(
k2

0 +
ik0

2a

)1/2

, (3.25)

X0(a) = −2iak0 + 3, (3.26)

Y0(a) = 3aik0 − 15

4
. (3.27)

The following fact is noticeable. Functions (3.25), (3.26), (3.27) obey equations (3.18,
3.19) and equation (2.26). This fact can be easily understood. Functions Û0

+ and Û0
− are the

fundamental solutions of the ODE at ±k0 and the proof of Theorem 2 can be applied to these
functions. Therefore, evolution equations describe not only the exact solutions of the slit and
the strip problems, but also zero-order approximations of these solutions.

Let be λ(a) = λ0(a) + δλ(a), X(a) = X0(a) + δX(a), where δλ(a) and δX(a) are small
values. Substituting these expressions into (3.18, 3.19), we obtain approximate linearized
evolution equations. Using standard technique, one can obtain that δλ ∼ exp[±2iak0] and
δX ∼ exp[±2iak0]. The estimations show, that these terms have the phase coefficient, corre-
sponding to the next diffraction order, i.e. it describes diffraction of Û0

+ on the left edge and

Û0
− on the right edge.

Functions D0 and E0 can be used as zero-order approximations of D and E for large k0a.
below we discuss how other terms of asymptotic series for D and E can be constructed.
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4 Schwarzschild series and Liouville theorem

4.1 Formulation of diffraction problem for successive
diffraction fields

In the previous section we proved, that it is necessary to find λ and X only for one particular
value of a; their values for other a can be found from evolution equations. However, it is
not an easy problem to find even one pair of λ(a), X(a). Here we describe a procedure to
find approximations of λ and X for large k0a. We suppose below that k0 has a small positive
imaginary part.

From the point of view of physics, one can describe diffraction on a strip as a sequence
of diffractions on the edges of the strip. In zero-order approximation the scattered field is a
sum of the fields, diffracted independently on the half-lines (−∞, a), (−a,∞). The result of
the first diffraction (function Û0

+ + Û0
−) has been concerned in the previous section. Wave field

corresponding to the spectrum Û0
+ satisfies boundary conditions (1.2), (1.3) everywhere, except

the half-line (−∞,−a), so this field “does not know” about the left edge of the strip. When
this field reaches the left edge, the secondary diffraction occurs. Note that the scatterer in this
case is not the screen (the field satisfies boundary condition on the screen), but the absence of
the screen, where the normal derivative of the field must be continuous. When we study the
secondary diffraction, we suppose that the screen occupies the half-line (−a,∞) etc. So, the
wave is successively scattered by the right and the left edge of the strip. The same process
beginning with Û0

− must also be studied.
The spectrum of the total field (the sum of all iterations) satisfies the ODE (2.4). Moreover,

zero-order approximation of the spectrum (functions Û0
+ and Û0

−) also satisfy the ODE of the
same kind. One can suppose, that it is valid for each order of diffraction. However, it is not
true. The second-order diffraction field does not satisfy the ODE with rational coefficients (at
least we cannot prove that it does). But in spite of that, some combinations of determinants
happen to have the same structure as D(k) and E(k). This (rather nontrivial) fact is the
statement of Theorem 3 proven in the end of current section.

Represent the scattered field u(x, y) for y > 0 as the sum

u(x, y) = −eik0y +
∞∑

n=0

(un
+(x, y) + un

−(x, y)), (4.1)

where un
± (except the zero-order terms u0

±) is the result of diffraction of the field un−1
∓ on the

half-line (a,∞) or (−∞,−a) respectively. the zero-order term compensates non-zero values of
the normal derivative of the reflected wave on the lines (a,∞) and (−∞,−a) (it must be equal
to 0 in accordance with boundary condition (1.3)).

Note that the upper index nowhere denotes power in this and subsequent sections.
The first term in (4.1) is the reflected field. It is known, that there is no contribution

corresponding to the reflected plane wave in the total scattered field, but such contribution
presents in the solutions of half-line problems. So, the first term in (4.1) and the plane wave
term in u0

+ + u0
− compensate each other.

It is not a simple task, however to establish in what sense the series (4.1) is asymptotical.
One can prove that angular spectrum of the series (4.1) taken on the segment (−π/2+ε, π/2−ε)
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with respect to y-axis is asymptotical (ε is a small positive number). Keller’s Geometrical
Theory of Diffraction (GTD) is based on this fact.

For each n ≥ 0 functions Ûn
± obey the boundary conditions on the ”big screens”:

un
+(x, 0) = 0 for x < a,

(4.2)
un
−(x, 0) = 0 for x > −a.

For n ≥ 1 each term compensates the discontinuity of the normal derivative of the previous
term on the line y = 0:

∂un
+(x, 0)

∂y
= −∂un−1

− (x, 0)

∂y
for x > a,

(4.3)
∂un

−(x, 0)

∂y
= −∂un−1

+ (x, 0)

∂y
for x < −a.

Zero-order term compensates the normal derivative of the reflected field:

∂u0
+(x, 0)

∂y
= ik0 for x < a,

(4.4)
∂u0

−(x, 0)

∂y
= ik0 for x > −a.

Indeed, each term satisfies Helmholtz equation.
Thus, for each term we have a sequence of specific half-line diffractional problems (they

must be supplemented with radiation conditions and Meixner conditions at the edges x = ±a).
Each half-line problem can be solved using standard Wiener-Hopf method.

4.2 The solution of successive diffraction problems using Wiener-
Hopf method

Denote Fourier transforms of un
± by

Ûn
+(k) =

∞∫

a

eikxun
+(x, 0)dx, (4.5)

Ûn
−(k) =

−a∫

−∞

eikxun
−(x, 0)dx. (4.6)

Comparing the definitions of Û± (1.8), (1.9) with (4.5), (4.6), we conclude that

Û±(k) =
∞∑

n=0

Ûn
±(k). (4.7)

Restrictions (4.2–4.4) can be reformulated in the form of Wiener-Hopf functional problems.
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Zero-order diffraction terms obey the following analytic restrictions:

Û0
±e∓ika is analytic for Im[±k] > 0,

(4.8)(
Û0
±

√
k2

0 − k2e∓ika ± k0

k

)
is analytic for Im[±k] < 0 and k = 0.

Note that functions Û0
± have simple pole at k = 0. Other terms Ûn

± are regular at this point.
For all n ≥ 1 regularity restrictions are

Ûn
±e∓ika is analytic for Im[±k] > 0 and k = 0,

(4.9)
(Ûn

± + Ûn−1
∓ )

√
k2

0 − k2e∓ika is analytic for Im[±k] < 0 except k = 0.

Besides, functions Ûn
± must grow no faster than k−1 exp{±iak} at infinity. It follows from

Meixner conditions.
Skipping the details (which are discussed in [9]), we represent the solution of Wiener-Hopf

problems (4.8, 4.9) in the form

Û0
±(k) = ± ie±iak

√
k0

k
√

k0 ± k
(4.10)

Ûn
±(k) = − e±ika

√
k0 ± k

F±[Ûn−1
∓ (k)e∓ika

√
k0 ± k], (4.11)

where F± are integral operators of Cauchy type

F±[V (k)] = ± 1

2πi

∫

γ±

V (τ)dτ

τ − k
. (4.12)

Contours of integration γ± coincide with the real axis everywhere except the vicinity of τ = 0.
Contour γ+ passes below τ = 0, contour γ− passes above τ = 0.

The iterative procedure close to described above has been proposed by D.S.Jones [10].
He calculated approximately the terms Û1

± (in our notations), which provide ultimately good
approximation for the solution even for the case of relatively small values of k0a.

Operators F± are known [9] to perform an additive decomposition of function V . For
example,

V (k) = F+[V (k)] + (V (k)− F+[V (k)]),

where the first term is regular above the contour γ+ and the second is analytical below this
line. Operator F+ in the form (4.12) defines Ûn

+ only above the contour γ+. All other values of

Ûn
+ must be found using analytic continuation. In the next section we shall obtain some useful

properties of F±.
For n = 0 representation (4.10) coincides with (3.21, 3.22).
Directly from the formulation of the functional problems one can find that functions Ûm

±
are regular at k = ±k0, functions Ûn

± + Ûn−1
∓ change signs at k = ∓k0 (see (4.8, 4.9)). This

property will be used in the next subsection to prove Theorem 3. Integral representation (4.11)
will be used in Section 5 for numerical calculations.

21



4.3 Representation of the coefficients of the ODE in terms of Ûn
±

Let us represent the determinants D(k) and E(k) in the form

D =

∣∣∣∣
Û ′
−, Û−

Û ′
+, Û+

∣∣∣∣ E =

∣∣∣∣
Û ′
−, Û ′′

−
Û ′

+, Û ′′
+

∣∣∣∣ (4.13)

Substituting (4.7) into (4.13), we obtain representation of D and E in the form of formal series

D =
∞∑

n=0

(
n∑

m=0

∣∣∣∣
(Ûm

− )′, Ûm
−

(Ûn−m
+ )′, Ûn−m

+

∣∣∣∣
)

,

(4.14)

E =
∞∑

n=0

(
n∑

m=0

∣∣∣∣
(Ûm

− )′, (Ûm
− )′′

(Ûn−m
+ )′, (Ûn−m

+ )′′

∣∣∣∣
)

.

Below we prove that not only the whole series, but each term of the series has a simple
structure.

Theorem 3 Finite sums

Dn(k) =
n∑

m=0

∣∣∣∣
(Ûm

− )′, Ûm
−

(Ûn−m
+ )′, Ûn−m

+

∣∣∣∣ (4.15)

and

En(k) =
n∑

m=0

∣∣∣∣
(Ûm

− )′, (Ûm
− )′′

(Ûn−m
+ )′, (Ûn−m

+ )′′

∣∣∣∣ (4.16)

are rational functions of k multiplied by
√

k2
0 − k2. Moreover, functions Dn(k) and En(k) have

the form of (2.12), (2.13).

Consider the function Dn(k) for some n > 0. (the consideration of En(k) is similar).
Introduce the notation

|V1, V2| ≡
∣∣∣∣

V ′
1 , V1

V ′
2 , V2

∣∣∣∣ (4.17)

for any functions V1(k) and V2(k). Obvious properties

|V1, V2| = −|V2, V1|,
|V1, V1| = 0, (4.18)

|V1, V2 + V3| = |V1, V2|+ |V1, V3|

follow from (4.17).
Note that the sum

∑n
m=0 |Ûm

− , Ûn−m
− | is equal to zero, because the terms with indexes m

and n−m compensate each other.
Rewrite (4.15) in the form

Dn =
n∑

m=0

|Ûm
− , Ûn−m

+ | =
n∑

m=0

|Ûm
− , Ûn−m

+ |+
n−1∑
m=0

|Ûm
− , Ûn−m−1

− | =
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n−1∑
m=0

|Ûm
− , Ûn−m

+ + Ûn−m−1
− |+ |Ûn

−, Û0
+| (4.19)

Note that each determinant |Ûm
− , Ûn−m

+ + Ûn−m−1
− | has the following property: it has no branch

points in the lower half-plane except k = −k0 and it changes its sign at this point (see (4.9)).
Beside that, |Ûm

− , Ûn−m
+ + Ûn−m−1

− | has algebraic growth in the lower half-plane of k. The term

|Ûn
−, Û0

+| has the same properties (note, that Û0
+ is known algebraic function).

Adding the sum
∑ |Ûm

+ , Ûn−m−1
+ | to Dn, one can prove, that Dn changes its sign at k =

k0 and has algebraic growth in the upper half-plane. Using Liouville theorem, we find that√
k2

0 − k2Dn is a rational function. A more accurate study of singular points of Dn and En and
their behavior at infinity shows that these functions have the form of (2.12), (2.13):

Dn(k) =
Pn(k)

(k2 − k2
0)

3/2(k − k∗)2
, En(k) =

Qn(k)

(k2 − k2
0)

5/2(k − k∗)3
,

where Pn and Qn are the polynomials of order 2 and 5 respectively. Zero order functions D0

and E0 are given by (3.23), (3.24).
One possible way to calculate the polynomials Pn, Qn for arbitrary n is to calculate Dn

and En at several points k using the explicit integral representation (4.11). In the following
section we propose another method for calculating D1 and E1. Meanwhile, this method gives
an independent proof of Theorem 3 for the particular case of n = 1.

5 Method of calculations and numerical results

5.1 Elementary properties of integral representation (4.11)

For the numerical calculations below we will use the truncated series (4.14):

D(k) ≈ D0(k) + D1(k), E(k) ≈ E0(k) + E1(k). (5.1)

Now we are focusing on calculation of D1 and E1. Direct substitution of the integral
representation (4.11) into the definitions (4.3) and (4.4) of D1 and E1 leads to ugly formulas
containing integrals with parameters. At a glance it is not clear why D1 and E1 have the form
of r.-h.s. of (2.12, 2.13). In the following subsection we obtain a convenient representation of
(Û1

±)′, which yields reasonable expressions for D1 and E1.
Let us establish here some elementary properties of operators F±, defined in the previous

section.

1. It is obvious that F± are linear operators, so for a constant c and arbitrary V , V1, V2

F±[cV (k)] = cF±[V (k)], F±[V1(k) + V2(k)] = F±[V1(k)] + F±[V2(k)].

Here we do not discuss the class of functions, to which the operators F± can be applied. How-
ever, there is no doubt that all our functions are ”good” in this sense because of exponential
factors.
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2. For a wide class of functions V

(F±[V ])′ = F±[V ′] (5.2)

This property can be proven by integration by parts:

(F±[V (k)])′ = ± 1

2πi

∫

γ±

V (τ)dτ

(τ − k)2
= ∓ 1

2πi

∫

γ±
V (τ)d

(
1

τ − k

)
= ± 1

2πi

∫

γ±

V ′(τ)dτ

τ − k
.

3. For each k1 not lying on contour γ±

F±

[
V

k − k1

]
=

F±[V ]

k − k1

+
F±(V, k1)

k − k1

, (5.3)

where

F±(V, k1) = ∓ 1

2πi

∫

γ±

V (τ)dτ

τ − k1

. (5.4)

This property follow from an elementary relation

1

(τ − k1)(τ − k)
=

1

k − k1

(
1

τ − k
− 1

τ − k1

)
.

Note, that F±(V, k1) does not depend on k.
Equation (5.3) can be interpreted as follows. Operator F+ (4.11) provides the additive

decomposition of function V into two terms, one of which is analytic above the contour γ+, and
another is analytic in the lower one:

V (k) = V+(k) + V−(k); V+(k) = F+[V (k)].

Let us decompose the same way the function V/(k − k1). Decomposition of the form

V

k − k1

=
V+

k − k1

+
V−

k − k1

is not valid because of an undesired pole at k = k1, which either belongs to the first term in
the upper half-plane or to the second term in the lower half-plane. However, this pole can be
easily subtracted from the corresponding term. The value −F+(V, k1) is the residue of either
the first or the second term at k1.

5.2 Calculation of D1(k) and E1(k)

For calculation of D1 we need a convenient representation of Û1
± instead of (4.11). Using the

integral representation (4.11) and the property (5.2), we obtain

(Û1
±)′ =

(
±ia− 1

2(k ± k0)

)
Û1
± −

e±ika

√
k0 ± k

F±

[(
Û0
∓e∓ika

√
k0 ± k

)′]
. (5.5)
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Using explicit formula (4.10) for Û0
±, we note that

(
Û0
∓e∓ika

√
k0 ± k

)′
=

(
∓2ia− 1

k
− 1

2(k ∓ k0)
+

1

2(k ± k0)

)
Û0
∓e∓ika

√
k0 ± k, (5.6)

Substituting (5.6) into (5.5) and applying (5.3), we obtain

(Û1
±)′ =

(
±ia− 1

k
− 1

2(k ± k0)

)
Û1
± ±

ie±ika
√

k0√
k0 ± k

[ F1
±

2(k ± k0)
− F2

±
2(k ∓ k0)

− F3
±

k

]
, (5.7)

where

F1
± = F±

(
e∓2ika

√
k0 ± k

k
√

(k0 ∓ k)
,∓k0

)
,

F2
± = F±

(
e∓2ika

√
k0 ± k

k
√

(k0 ∓ k)
,±k0

)
,

F3
± = F±

(
e∓2ika

√
k0 ± k

k
√

(k0 ∓ k)
, 0

)
.

Using the definition of F±, we note that

F j
+ = −F j

− ≡ Fj for j = 1, 2, 3.

Equation (5.7) can be used for calculation of (Û2
±) e.t.c. Using this technique, one can

obtain differential equation of order n for any Ûn
±.

Note that (5.7) is an inhomogeneous differential equations of order 1 (Fj are constants).
This equation has some noticeable features. the series (4.7) is not asymptotic series for arbitrary
k and some special methods must be used for constructing the solution near k = ±k0 (see [9]).
However, equation (5.7) involves three constants, which are asymptotically small! Namely, F1

is of order (k0a)−1/2 exp ik0a; F2 and F3 are of order (k0a)−3/2 exp ik0a (it can be proven by
deforming contour γ± into the loop, coming from ±i∞ and circling ±k0). Later we will see that
D1 and E1 are the linear combinations of Fj, so D1 and E1 are exponentially small relatively
to D0, E0. More detailed investigation shows that series (4.14) is asymptotical for each k.

Note also that equation (5.7) is valid on the whole Riemann surface of Û1
±, and representation

(4.11) is valid only above γ+ for Û1
+ and below γ− for Û1

−.
Formula (5.7) is too simple to be new, but the author is not aware of any references on

similar results.
Equation (5.7) enables to rewrite (Û1

±)′ and (Û1
±)′ in terms of Û1

±. Substitute (5.7)into the

definitions of D1 and E1. Performing simple calculations, we see, that the terms containing Û1
±

vanish and functions D1, E1 become expressed in terms of Fj:

D1 =
k0[k

2(F1 −F2 − 2F3) + 2k2
0F3]

k2(k2
0 − k2)3/2

, (5.8)

E1 = − k0q1(k)

4k2(k2
0 − k2)5/2

, (5.9)
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where

q1(k) = 2k2
0(−5 + 2iak0)F1 + 2(3k2

0 + 3iak3
0)F2 − 2(−7k2

0 + 4iak3
0 + 4a2k4

0)F3+

k2[(−3 + 8iak0 + 4a2k2
0)F1 + (3− 4a2k2

0)F2 + 2(3− 4iak0 − 8a2k2
0)F3]+

k4(−4a2F1 + 4a2F2 + 8a2F3).

Expressions (5.8, 5.9) have the form of (2.12, 2.13). This fact is an agreement with Theorem 3
for the particular case of n=1. Note, that this result is obtained without applying Liouville
theorem.

Formula (5.4) provides an explicit integral representation for the values of Fj for each a and
k0, so (5.8), (5.9) with (3.23), (3.24) can be used for approximate numerical calculation of D
and E according to (5.1).

Since Fj are asymptotically small, D1 and E1 are asymptotically small relatively to D0

and E0.
All the results above concerned the strip problem. One can repeat point by point this

procedure for the slit problem as well. All the calculations are similar, so below we write down
only the final expressions for the “slit” D0, E0, D1, E1.

D0 =
k0 − 2ia(k2 − k2

0)

k2k0(k2
0 − k2)3/2

, (5.10)

E0 = −15k0 − 6ia(k2 − 3k2
0) + 12a2k0(k

2 − k2
0)− 8ia3(k2 − k2

0)
2

4k0k2(k2
0 − k)5/2

, (5.11)

D1 =
k2(F1 −F2 + 2F3)− 2k2

0F3

k0k2(k2
0 − k2)3/2

, (5.12)

E1 =
q1(k)

4k0k2(k2
0 − k2)5/2

, (5.13)

where

q1(k) = 2k2
0(3− 2iak0)F1 − 2k2

0(5 + 2iak0)F2 − 2k2
0(7 + 4iak0 − 4a2k2

0)F3+

k2((3− 4a2k2
0)F1 + (4a2k2

0 − 3− 8iak0)F2 + (6 + 8iak0 − 16a2k2
0)F3)+

k4(4a2F1 − 4a2F2 + 8a2F3),

F1 = F+

(
e∓2ika

√
k0 ∓ k

k
√

(k0 ± k)
,∓k0

)
,

F2 = F+

(
e∓2ika

√
k0 ∓ k

k
√

(k0 ± k)
,±k0

)
,

F3 = F+

(
e∓2ika

√
k0 ∓ k

k
√

(k0 ± k)
, 0

)
.

Note, that F1 now has asymptotical estimation (k0a)1/2 exp[ik0a].
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5.3 Numerical results

Our purpose here is to show that equations (2.4) in the form (2.25) and (3.18), (3.19) provide
reasonable results, which are in good agreement with the GTD and Jones’ approximations.

In the calculations using our method we use use truncations (5.1) for estimation of D and
E.

Consider the strip problem with normal incidence. Using (5.8), (5.9) we calculate the
parameters X(a) and λ2(a). We choose k0 = 1. The results are presented in Fig. 2 (dots); the
solid line represents the solution of evolution equation (3.18, 3.19). The pair (X, λ) obtained
from (5.8, 5.9) for k0a = 10 has been used as initial conditions for the evolution equation. One
can see that the agreement between two different methods of calculation is very good for this
case.

Figure 2: Values of λ2 and X for the strip problem. Points are calculated using first-order
diffraction approximation, solid line is the solution of the evolution equations.

Now we compare the solutions of ODE (2.25) with the GTD approximation. We use the
following representation of GTD formula ([5]):

ŴGTD(k) = − i
√

k0

k

(
eika

√
k0 + k

− e−ika

√
k0 − k

)
+

(ik0)
1/2e2iak0

8
√

π(ak0)3/2

(
eika

(k0 + k)3/2
− e−ika

(k0 − k)3/2

)
(5.14)
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We also use for comparison the zero-order approximation Ŵ 0 = −Û0
+ − Û0

−, where Û0
± are

defined by (4.10).
Instead of Jones’ approximate formulas we use his exact integral representation for first-

order diffraction term. It takes several seconds to perform such direct calculations using a
computer of moderate computational abilities.

Figure 3: Normalized diffraction patterns for k0a = 1 (strip problem). 1 — Zero-order diffrac-
tion approximation; 2 — GTD approximation; 3 — the solution of the ODE (the coefficients
are calculated using the first-order diffraction approximation); 4 — Jones’ approximation (two
first diffraction terms).

Fig. 3 represents the graphs of the absolute values of normalized Ŵ0

√
k2

0 − k2, ŴGTD

√
k2

0 − k2,

Ŵ
√

k2
0 − k2 and ŴJ

√
k2

0 − k2 (Jones’) (curves 1, 2, 3, 4 respectively) All functions are multi-

plied by constants, such that their values at k = 0 are equal to 1. Normalized function Ŵ is
the solution of the ODE (2.25) calculated under the initial conditions Ŵ ′(0) = 0, Ŵ (0) = 1/k0.
Parameters λ, X are taken from the results presented in Fig. 2 (dots). One can see that Ŵ is
close to the GTD approximation everywhere except the proximity of k = k0, where the GTD
theory is not valid.

One can see that Jones’ approximation is very close to our solution everywhere. It is not
surprising because we used the same first-order diffraction terms to calculate the approximaion
of the coefficients of the ODE. However, it is not true that Jones’ solution obeys the eqution
(2.4). One can show that this solution obeys a homogeneous equation of order 4.

Parameter k0a is chosen to be equal to 1, since for larger k0a the curves are too close to
each other.

Fig. 4 and Fig. 5 represent the same results as Fig. 2 and Fig. 3 but for the slit problem.
For this case

W̄GTD =
1√
k0k

(
eika

√
k0 − k

− e−ika

√
k0 + k

)
+
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i−3/2e2ik0a

√
πak0

(
eiak0

√
k0 − k(k0 + k)

+
e−iak0

√
k0 + k(k0 − k)

)
(5.15)

Figures 5a, 5b and 5c correspond to k0a = 3, 8 and 20 respectively. Figure 5b can be compared
with [6].

Figure 4: Values of λ2 and X for the slit problem.

One can note that the difference between the parameters X and λ calculated using the
approximate formulas and the evolution equation is bigger than that of strip problem. It can
explained by the fact that the magnitude of the edge to edge interaction for the slit is greater
than for the strip. Namely, the magnitude of the field, radiated by the edge of the slit and
reaching another edge is of order (k0a)−1/2 exp{2ik0a}. Such magnitude for the strip problem
is of order (k0a)−3/2 exp{2ik0a}.

One possible measure of the validity of the solution for the slit problem is the value of
W̄

√
k2

0 − k2 at k = ±k0. For exact solution it must be equal to zero. One can see that for
relatively small k0a = 3 the solution of (2.25) is reasonably good in this sense.

6 Conclusions

1. Above we have represented a new approach to a specific functional problem emerging in a
diffraction problem. This approach is, roughly speaking, in reducing the functional problem to
a boundary problem for some ODE with rational coefficients. One can note that in its current
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form our method can hardly be named practical for solving the problem of diffraction by a
strip; simplier methods give results that are numerically satisfactory. So it would be better to
say that here we only prove some theorems concerning the functional problems; the practical
benefits can be enjoyed only after the significant improvements of the method.

The main source of numerical difficulties is the presence of many unknown parameters
including the location of some singular points of the ODE. Fortunately, there are some reasons
to hope that the structure of the ODE can be significantly simplified. One possible way to
simplify the ODE is to use the idea of Craster [16], who proposed to search the solutions of
some specific ODEs in the form of linear combinations of solutions of simplier ODEs. As we
can see now, the ODE (2.4) admits such a transformation. Another way is to develop the
technique of summation of Schwarzchild’s series. It can be made with the help of the trick
used here for approximate calculation of the coefficients of the ODE. A detailed study of the
series shows that the set of ODEs can be derived directly from the series and this set has a
simplier structure. The author is going to continue the work in these two direction and hopes
that finally an effective tool for diffraction problems will be developed.

2. The ideas discussed in the paper hardly can be interesting if they can be applied only
to such a particular problem as diffraction on an ideal strip. We have some ideas how to apply
these ideas to a wider class of problems. Sommerfeld proposed to study some 2D diffraction
problems as acoustic propagation on multi-sheet “Riemann” surfaces [13]. We think that the
method proposed above works for diffraction problems that can be interpreted as propagation on
the surfaces with finite number of sheets.

Namely, the problem studied above is propagation on a surface with 2 sheets and 2 branch
points (the edges). The simpliest generalization is to study the diffraction on a set of strips
located in one plane (2 sheets and 2N branch points). The analysis made above can be applied
to this problem almost unchanged. A more difficult structure is a juncture of 2 strips at right
angle. This structure is equivalent to propagation on 4-sheet surface with 5 branch points. A
special technique (see [17]) can be used for deriving the functional problem for this case. Of
course, the work on the interesting and complicated problems mentioned here can be performed
only after the development of effective methods of solving the ODEs.
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Figure 5: Normalized diffraction patterns for the slit problem. a) k0a = 3, b) k0a = 8, c)
k0a = 20. 1 — Zero-order diffraction approximation; 2 — GTD approximation; 3 — the
solution of the ODE.
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