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Differential Equations Associated with Diffraction Problems

Andrey V. Shanin

Department of Physics, Moscow State University, Russia
e-mail: shanin@ort.ru

The problem of plane wave scattering on a strip or a set of strips situated
in one plane is under consideration. A functional equation of Wiener-Hopf type
with analytical restrictions on unknown functions is derived. It is shown that the
solution of the problem (the spectrum of the scattered field) is a solution of an
ordinary differential equation (ODE). The coefficients of the ODE are known up to
several numerical constants. The restrictions enabling to determine the constants
are discussed. Thus, the problem of diffraction of strips is reduced to the problem
of finding the numerical constants and solving the ODE instead of solving the
integral equation.

Introduction

The problem of diffraction of a plane harmonic wave on an infinite strip with Dirichlet
boundary condition is studied. This problem can be solved explicitly in elliptic coor-
dinates. However, this solution is not satisfactory for numerical calculations since the
series converge slow for large wave size of the strip. This problem had been exces-
sively studied in sixties [1, 2] in order to build a satisfactory asymptotics. An iterative
procedure for solving the boundary integral equations was constructed for this problem.

Some attempts have been performed to apply Wiener-Hopf method to the problem
of diffraction on a strip. However, these attempts faced a serious obstacle. Wiener-
Hopf equations, constructed for the problems of diffraction on a strip or a slit involve
an entire function with known order of growth [3]. No effective method to represent
an entire function with known properties has been proposed. An approximate Wiener-
Hopf method has been developed for obtaining asymptotic solution. As a result the
elegance of Wiener-Hopf method was lost.

Here we introduce a method applicable to solving the mixed boundary-value prob-
lem, which can be reduced to a Wiener-Hopf functional equation, involving unknown
entire functions. The idea of the method is the following. The behavior of the unknown
functions on the complex plane can be easily studied. Some properties of unknown func-
tions seem to be similar to typical properties of solutions of a homogenous ordinary
differential equation (ODE). It is proven that the solutions actually obey an ODE with
rational coefficients. A detailed analysis of singular points shows that the coefficients
are determined up to a finite number of numerical parameters. The restrictions on
unknown parameters can be obtained.
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Problem formulation and derivation of functional equation

Consider a classical problem with mixed boundary conditions. Let the equation

∆u + k2
0u = 0 (1)

be fulfilled for the function u(x, y) in the half-plane y > 0, −∞ < x < ∞. Time
dependence of all values is chosen as e−iωt, i.e. a plane wave propagating in the positive
direction os x axis has the form eik0x.

Boundary conditions are:

u(x, 0) = −e−ik∗x for − a < x < a. (2)

and
∂u(x, 0)

∂y
= 0 for −∞ < x < −a ∪ a < x < ∞. (3)

We are supposing that there are no waves coming from infinity and no growing
terms (the field satisfies Sommerfeld’s conditions at infinity). We also expect that the
field and its derivative possess a known asymptotics in the vicinity of the points −a
and a. The asymptotics is taken from the exact solution of the problem of diffraction
on a semi-infinite screen. This restriction corresponds to Meixner’s condition.

The problem (1, 2, 3) is equivalent to the problem of diffraction on an infinite strip
(or on a segment for 2D section). The incident field is a plane wave coming at the angle
ψ to y-axis, such that k∗ = k0 sinψ.

The field can be presented in the form of Fourier integral

u(x, y) = − 1
2π

∞∫

−∞
Ŵ (k)e−ikx+i

√
k2
0−k2ydk, (4)

where the contour of integration coincides with the real axis almost everywhere and
passes below the point k0 and above the point −k0.

Representation (4) can be used for calculation of y−derivative of the field on x−axis.
Applying Fourier transform and taking into account (3), we obtain

Ŵ (k) =
i√

k2
0 − k2

a∫

−a

∂u(x, 0)
∂y

eikxdx. (5)

Applying Fourier transform to function u(x, 0) and taking into account (2), we
obtain

Û+(k) + Û−(k) + Ŵ (k) = 0, (6)

where

Û+(k) =
∞∫

a

u(x, 0)eikxdx +
iei(k−k∗)a

k − k∗
, (7)

Û−(k) =
−a∫

−∞
u(x, 0)eikxdx− ie−i(k−k∗)a

k − k∗
, (8)
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A similar equation has been obtained in [3].
Note that due to (7, 8, 5) the following properties of unknown functions are valid:

Û+(k) is defined and has no singularities in the upper complex half plane k; Û−(k)
is defined and has no singularities in the lower half plane;

√
k2

0 − k2Ŵ (k) is an entire
function of k. Note also that there are no waves coming from the infinity, therefore
Û+(k) has no singularities on the positive real half-axis (except k = k∗) and Û−(k)
has no singularities on the negative real half-axis (except k = k∗). At k = k∗ both
Û+(k) and Û−(k) have a simple pole at k∗. Note that Û+(k) is a regular function at
k = k0 and Û−(k) is a regular function at k = −k0 (in the opposite case there must be
cylindrical waves coming from infinity).

Using (6) one can build analytical continuation of Û+(k) and Û−(k) to a Riemann’s
surface over the complex plane. For our purposes we need only the prolongation of
Û+(k) into the lower half-plane and of Û−(k) into the upper one from the real axis.
Note that the function Û+(k) obtained from this continuation is analytical on the
complex plane cut along the line (−∞,−k0) (except the pole at k∗); Û− is analytical
on the complex plane cut along the line (k0,∞) (except the pole at k∗).

Accordingly to the exact solution of a simpler problem of diffraction on a semi-
infinite screen [3], we are looking for the functions Û+(k), Û−(k), Ŵ (k) with the fol-
lowing asymptotic expansions in the upper and lower half-planes:

Û+(k) ∼ eika

k3/2

∞∑

n=0

an

kn
for Im[k] > 0,

Û−(k) ∼ e−ika

k3/2

∞∑

n=0

bn

kn
for Im[k] < 0,

(9)

Ŵ (k) ∼ e−ika

k3/2

∞∑

n=0

cn

kn
for Im[k] > 0,

Ŵ (k) ∼ eika

k3/2

∞∑

n=0

dn

kn
for Im[k] < 0,

These asymptotics can be illustrated as follows. Let r and φ be local polar coordi-
nates in the proximity of the point x = a and let the direction φ = 0 correspond to the
negative x direction. Then the total field (the incident plane wave plus the scattered
field u) can pe presented as a series in Bessel’s functions

utot(r, φ) =
∞∑

n=1

qnJn/2(k0r) sin(nφ/2).

This representation leads to (9).
Another (Meixner’s) argument takes into account the energy flow from the vertexes

of the segment (−a, a).
Equation (6) with asymptotics (9) and restrictions on analyticity of functions Û+(k),

Û−(k) and Ŵ (k) form the functional equation under consideration.
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Differential equation associated with the functional equation

Suppose that the solution of the problem is known, i.e. functions Û+(k), Û−(k) and
Ŵ (k) possessing the properties mentioned above have been found. Let us find a linear
homogenous ordinary differential equation (ODE) of the second order

V ′′(k) + f(k)V ′(k) + g(k)V (k) = 0, (10)

such that the functions Û+(k), Û−(k) and Ŵ (k) are its solution. Prime corresponds to
the derivation in k.

It is obvious that we can demand that only two functions obey the equation, the
third obeys it due to (6).

Note that one can find a differential equation, such that arbitrary two functions obey
it. Let for example Û+(k) and Ŵ (k) be such functions. Than the pair of equations is
valid:

f(k)Û ′
+(k) + g(k)Û+(k) = −Û ′′

+(k),
(11)

f(k)Ŵ ′(k) + g(k)Ŵ (k) = −Ŵ ′′(k).

This set can be treated as a system of linear algebraic equations with respect to f(k)
and g(k). Its solution is given by the formulas

f(k) = −D′(k)
D(k)

, (12)

g(k) = −E(k)
D(k)

, (13)

where D(k) and E(k) are the determinants

D(k) =

∣∣∣∣∣
Û ′

+(k), Û+(k)
Ŵ ′(k), Ŵ (k)

∣∣∣∣∣ = −
∣∣∣∣∣

Û ′−(k), Û−(k)
Ŵ ′(k), Ŵ (k)

∣∣∣∣∣ , (14)

E(k) =

∣∣∣∣∣
Û ′

+(k), Û ′′
+(k)

Ŵ ′(k), Ŵ ′′(k)

∣∣∣∣∣ = −
∣∣∣∣∣

Û ′−(k), Û ′′−(k)
Ŵ ′(k), Ŵ ′′(k)

∣∣∣∣∣ . (15)

Each determinant has its “first representation” (through Û+ and Ŵ ) and “second rep-
resentation” (through Û− and Ŵ ). Note that this fact is of great importance because
the analytical restrictions on Û+ and Û− are different.

Note that

D′(k) =

∣∣∣∣∣
Û ′′

+(k), Û+(k)
Ŵ ′′(k), Ŵ (k)

∣∣∣∣∣ .

The following argument proves that the determinants D(k) and E(k) have a simple
structure on their Riemann surfaces and they belong to a very narrow class of functions.
The idea of the method is very close to classical Wiener-Hopf method.

Consider the determinant D(k). In the upper half plane of the argument it has
growth of order ∼ O(k−3) due to the first representation. It has the same order of
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growth in the lower half plane due to the second representation. Besides, D(k) only
changes its sign if the branch point k0 is circled by the argument (due to the first rep-
resentation). The same fact is valid for the point −k0 due to the second representation.
It means that the function

√
k2

0 − k2D(k) is single-valued on the whole complex plane.

As it follows from the definition of functions Û+, Û− and Ŵ , function
√

k2
0 − k2D(k)

has some singularities on the complex plane. It has the pole of the second order at
k = k∗ and simple poles at the points k0 and −k0. There are no other singularities.
Taking into account the known order of growth of the function D(k), one can conclude
that √

k2
0 − k2D(k) = M

(k − λ1)(k − λ2)
(k2 − k2

0)(k − k∗)2
, (16)

where M , λ1 and λ2 are unknown constants depending on k0, a and k∗.
Similar reasoning yields to the following representation for E(k):

√
k2

0 − k2E(k) = N
P (k)

(k2 − k2
0)2(k − k∗)3

, (17)

where
P (k) = k5 + p4k

4 + p3k
3 + p2k

2 + p1k + p0.

In order to find the coefficients f(k) and g(k) one must find parameters λ1, λ2, 5
coefficients of the polynomial P (k) and N/M .

Note that f(k) and g(k) are rational functions of k, which are known up to 8
constant parameters.

Restrictions on unknown parameters

There are two types of restrictions posed on unknown parameters of coefficients. Some
of them are local and obtained from the asymptotics in the singular points of the ODE.
The others are non-local and represent the monodromy data of the solutions of the
equation.

Consider the points from the set k∗, λ1, λ2. Each point has two integer exponents,
so the difference between exponents is also integer. It is well known, that there can be
logarithmic terms at such points. But the solutions Û+, Û− and Ŵ have no logarithmic
singularities. For each point there is a condition obtained in a standard way that assures
that there is no logarithmic term. So, we have 3 conditions.

Besides, we study the point k = ∞. Two restrictions can be found using known
asymptotics of the solutions at infinity.

If the parameters obey the restrictions mentioned above, then at each point there
is a pair of solutions with required asymptotics. One asymptotic must belong to Ŵ (k),
another — to Û+(k) or Û−(k). But there is no warranty that all asymptotics (at
different singular points) that must below for example to Ŵ (k) actually belong to
one solution of ODE. So one must model solutions of ODE along the lines connecting
singular points and check whether asymptotic expansions match at the ends of the
lines. Three restrictions can be obtained this way.
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Eigenwave problem for a srtip waveguider

In this section we discuss the problem for a strip waveguider. It is shown that the ODE
appearing in our consideration can be reduced to Mathieu’s equations.

We are looking for travelling modes along the strip, therefore they must have ex-
ponential decay in the cross-section plane axes. Therefore we must consider the initial
equation in the form of

∆u− λ2u = 0 (18)

instead of (1). Parameter λ2 is equal to β2 − k2
0, where β is a wavenumber in the

direction along the strip (orthogonal to x- and y-axes).
Construct the equation (10) for this problem. Note that there is no incident wave,

therefore Û+(k) and Û−(k) have no singularities except k = ±iλ. Therefore the power
of growth of D(k) is 2 less than in the previous sections and the power of growth of
E(k) is 3 less than in the previous sections. There is only one parameter that must be
found numerically. Equation (10) can be rewritten in the form:

V ′′(k) +
3k

k2 + λ2
V ′(k) + (a2 +

C

k2 + λ2
)V (k) = 0, (19)

where C is the unknown constant. It must be determined from the restrictions 1 and 2
from the Section 5. Note that in fact 2 parameters must be determined as the solution
of the eigenfunction problem: C and β (or λ), thus two restrictions are not renundant.

Perform a substitution of independent and dependent variables:

k = iλ cosϕ, (20)

V (k) =
v(ϕ)
sinϕ

. (21)

A differential equation can be obtained for v(ϕ) directly from (19):

d2v

dϕ2
+ (λ2a2 cos2 ϕ− C)v = 0. (22)

Note that (22) is Mathieu’s equation that appear when the equation (18) is solved in
elliptic coordinates. C is the constant of separation of variables. Equation for function
s in another variable (say, ξ) in elliptic coordinates is

d2s

dξ2
− (λ2a2 ch2 ξ − C)s = 0. (23)

This equation is equivalent to (22) if ξ is formally substituted by iϕ.
Note that the eigenvalue problem in elliptic coordinates is equivalent to restrictions

1 and 2 from Section 5 for ODE (10).
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Diffraction on a set of strips

Let equation (1) be fulfilled in the half plane y > 0, −∞ < x < ∞. Boundary conditions
for y = 0 are

u(x, 0) = −e−ik∗x (24)

for a1 < x < b1 ∪ a2 < x < b2 ∪ . . . ∪ an < x < bn

and
∂u(x, 0)

∂y
= 0 (25)

for −∞ < x < a1 ∪ b1 < x < a2 ∪ . . . ∪ bn < x < ∞.
This problem is equivalent to the problem of diffraction of a plane wave on a set of

n strips located in one plane.
The method used above leads to functional equation

Û−(k) + Ŵ1(k) + Û1(k) + . . . + Ûn−1(k) + Ŵn(k) + Û+(k) = 0, (26)

where

Ŵm(k) =
i√

k2
0 − k2

bm∫

am

∂u(x, 0)
∂y

eikxdx,

Û+(k) =
∞∫

bn

u(x, 0)eikxdx +
iei(k−k∗)bn

k − k∗
,

Û−(k) =
a1∫

−∞
u(x, 0)eikxdx− iei(k−k∗)a1

k − k∗
,

Ûm(k) =

am+1∫

bm

u(x, 0)eikxdx +
iei(k−k∗)bm+1

k − k∗
− iei(k−k∗)am

k − k∗
,

One can find a differential equation of order 2n, such that all the functions in (26)
are the solutions of it. It is necessary to exclude Û− or Û+ from the set of functions
at (26) and solve a set of linear equations with respect to the coefficients of ODE.
Methods similar to used above can be applied and one can find that all the coefficients
of equation are rational functions with a limited set of singularities. The procedure of
finding the unknown parameters is beyond this paper.

Conclusion

It is shown for the problem of diffraction on a single strip that the function Ŵ (k) (the
spectrum of the scattered field) is a solution of an ODE of second order. The coefficients
of the ODE are rational functions of k, known up to 8 parameters (complex numbers).
There are 5 analytical restrictions on these parameters (all restrictions follow from
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analysis of solutions near the singular points) and 3 conditions that must be checked
numerically.

For the problem of scattering on a set of n strips it is shown that all components
of the solution are solutions of an ODE of order 2n with rational coefficients.

Therefore a wide class of diffraction problems are reduced to ODE problems. Namely,
one must find numerically a set of parameters and then find the solution of correspond-
ing ODE to find the exact solution of the problem. This procedure seems to be more
effective, than the traditional one (solving the integral equation).
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