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Embedding formulae are remarkable as they allow one to decompose scattering
problems apparently dependent upon several angular variables (angles of incidence
and observation) into those dependent upon fewer angular variables. In terms of
facilitating rapid computations across considerable parameter regimes this is a con-
siderable advantage. Our aim is to derive embedding formulae for scattering and
diffraction problems in acoustics, electromagnetism, and elasticity.

Here we construct a general approach to formulating and using embedding for-
mulae, we do this using complementary approaches: overly singular states, and a
physical interpretation in terms of sources. The crucial point we identify is the form
of the auxiliary state used in the reciprocal theorem, this is unphysically singular
at the edge and is reminiscent of weight function methods utilized in fracture me-
chanics. Illustrative implementations of our approach are given using Wiener-Hopf
techniques for semi-infinite model problems in both elasticity and acoustics. We
also demonstrate our approach using a numerical example from acoustics and we
make connections with high frequency asymptotic methods.

Keywords: Embedding, integral equations, acoustics, electromagnetism,
elasticity, reciprocity

1. Introduction

In three dimensions the solution to a diffraction problem is usually represented as
a function of four angular variables: two of them specify the direction of the wave
vector of the incident plane wave illuminating the obstacle, and the other two are
the direction of the scattered wave. For two dimensional problems we have two,
rather than four, angular variables. The far-field diffraction pattern is a function of
these directions. If the diffraction problem is solved numerically then it is a time
consuming procedure to perform a parametric study — all of the angular variables
must be independently varied, and the numerical routine rerun for each value.

For many practically important cases there exists an elegant mathematical the-
ory, little known and not often utilized, that enables one to reduce the dimension of
the problem. The essence of this theory is the following: instead of directly solving
the main diffraction problem with the desired plane-wave incidence, one solves a
set of different auxiliary problems. For example, if the obstacle is a planar crack in
the medium, then the auxiliary problems are associated with the excitation of the
field by a point source located asymptotically close to the edge of the crack. We
could also interpret these auxiliary solutions as unphysically singular eigensolutions
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of the problem, in the sense that they no longer have the usual local square root
dependence on radial distance for the acoustic potential (φ(r, θ) ∼ r

1
2 ) at the edge,

but are instead square root singular there (φ(r, θ) ∼ r−
1
2 ). In this interpretation,

the source and the edge have conjoined and the material, exterior to the cracks, is
source-free.

The solution of the auxiliary diffraction problem (in three dimensions) depends
on only three variables: the position along the crack edge at which the source is
located, and the two angles that determine the direction of the scattering. The solu-
tion of the original diffraction problem is represented as the integral of the solutions
of the auxiliary problems. Such a representation is called an embedding formula.
The practical benefits of using an embedding formula are potentially huge; the nu-
merical procedure now no longer relies upon continually resolving the same set of
equations, and therefore the numerical effort is reduced dramatically. Moreover, an
exact analytical relation is now known for these complicated diffraction problems.
This enables us to justify the numerical procedures for some cases.

Embedding formulae have previously been derived for several diffraction prob-
lems, these have used a different set of auxiliary problems, or have used theories
based explicitly upon integral equations and cover: scattering by a rigid or absorbing
strip in acoustics (or the analogous slit problem) by Williams (1982), penny-shaped
cracks in elastic solids, Martin & Wickham (1983), and more recently for scattering
by thin and thick breakwaters for surface waves (in acoustics these are diffraction
gratings) the method has been embraced by Biggs et al. (2000); Biggs & Porter
(2001, 2002). However, except for Williams (1982) who uses grazing incidence to
generate the auxiliary solutions, the derivation of embedding formulae is typically
through complicated manipulations of integral equations that can obscure the route
to the final structure of the formula.

One purpose of this article is to demonstrate an easy way to derive embedding
formulae that has a physical interpretation and can be easily implemented, that
is, we use a set of auxiliary solutions that have immediate interpretations. We also
establish a general framework for embedding formulae and describe the classes of
problem for which embedding formulae can be determined. Here we shall consider
incident fields that consist of plane waves and this is important for the success of
the embedding technique, at least in the form in which we are presenting it.

We begin with an example demonstrating the basic ideas using a physical ap-
proach and valid in three dimensions. We then retreat to two dimensions and use
a formalism that connects more closely to weight functions, and use the reciprocal
theorem directly, together with a differential operator that we define later. The
ideas are demonstrated in the context of scattering by semi-infinite cracks or strips,
these are explicitly solvable using Wiener-Hopf techniques; any problem usually
approached using Wiener-Hopf or some other analytic method for scattering by a
plane wave can be interpreted and solved using embedding. An illustrative numeri-
cal implementation is given in section 5, asymptotic methods are also useful and we
compare the embedding formulae with high frequency asymptotics. We close with
some concluding remarks in section 7.
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Figure 1. The planar crack geometry and local coordinates.

2. Embedding formulae for a planar crack

First, we illustrate our ideas through a simple three dimensional example, and we
derive embedding formulae, valid for acoustic scattering of an incident plane wave,
by a planar crack (or cracks).

(a) Problem formulation

We consider the acoustic potential φ(x, y, z) that satisfies the Helmholtz equa-
tion

∇2φ + k2
0φ = 0 (2.1)

in the infinite domain, where Cartesian coordinates (x, y, z) are utilized, and the
cracks/defects occupy an area S in the (x, y) plane. The edges of the crack/defect
are the smooth, not necessarily simply connected, curve Γ. For definiteness, we take
the Dirichlet boundary condition φ = 0 to hold on the faces of the defect/crack; the
approach remains valid for Neumann or, in electromagnetic theory, for impedance
boundary conditions.

The total field φ is the sum of an incident field φin and a scattered field φsc.
The incident field is assumed to be a plane wave

φin = exp
[
−i(kin · x +

√
k2
0 − |kin|2z)

]
. (2.2)

where kin = (kin
x , kin

y ) and x = (x, y).
For physically meaningful solutions we require suitable edge conditions (Meixner’s)

to be satisfied, this means that the field near the edge of the crack has the asymp-
totic behaviour

φ ∼ Kr1/2 sin(ϕ/2), (2.3)

as r → 0. Here r is the distance from the edge of the crack/defect, and ϕ is the
angle in the local cylindrical coordinates taken such that ϕ lies along the crack face
on ϕ = 0+ (see Fig. 1).

We utilize uniqueness (Jones 1986), that is, we consider only the scattered field,
i.e. φ = φsc and assume that the Helmholtz equation, the boundary conditions,
radiation and edge conditions are all satisfied. Then φ = 0 identically. We assume
that the theorem of uniqueness is satisfied by all diffraction problems considered
here.
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Figure 2. The coordinates for the source close to the edge.

(b) Auxiliary solutions of the diffraction problems

We now introduce the auxiliary problems. These are diffraction problems, but
now with point source incidence. The scatterer is assumed to have exactly the same
geometry, and (homogeneous) boundary conditions, as the scatterer of the initial
diffraction problem, and the source is located close to the edge of the crack. It is
also assumed that the radiation condition at infinity holds.

Since the Dirichlet condition is taken on the crack faces, and we still assume the
physically meaningful, Meixner’s, condition to be satisfied at the edge, we cannot
simply place the source directly at the edge of the crack. We now consider a limiting
procedure, that is, we quantify how near the source is to the edge, and the auxiliary
functions are analysed in terms of this limiting procedure.

We introduce a coordinate l along the edge of the crack, and take a point lying
in the (x, y) plane a small distance, ε, from a position l0 = (x0, y0, 0) lying on the
contour Γ. We consider a diffraction problem with a point source, strength −πε−1/2,
located at this point and define φ̂ε(x, y, z; l0) to be the acoustic potential for this
problem. To determine this we solve an inhomogeneous Helmholtz equation:

∇2φ̂ε + k2
0φ̂ε = −πε−1/2δ(x− x′)δ(y − y′)δ(z), (2.4)

where δ is the delta-function, and the coordinates x′, y′ are

x′ = x0 + ε sinΘ, y′ = y0 − ε cosΘ.

Here Θ is the angle between the vector dl tangential to Γ and the x-axis (see Fig. 1).
A detailed study shows that for each point (x, y, z) in space, with the exception

of the point l0 on Γ, there exists a finite limit

φ̂(x, y, z; l0) = lim
ε→0

φ̂ε(x, y, z; l0). (2.5)

The function φ̂(x, y, z; l) is taken to be the auxiliary solution; we use the hat deco-
ration to distinguish quantities associated with the auxiliary problem.

The auxiliary problem has one important property: it depends on fewer vari-
ables than the physical diffraction problem. The function φsc depends explicitly
on three variables (the spatial coordinates) and implicitly on two variables: the
parameters kin

x and kin
y of the incident wave, i.e., the total number of variables is

five. The number of arguments for the auxiliary problem φ̂ is four, the two incident
parameters are replaced by the position of the source along l. We assume that the
function φ̂(x, y, z; l) is known, and now aim to express the far field of the initial
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diffraction problem, (2.1,2.2,2.3), in terms of the far field behaviour of the auxiliary
function.

To proceed, we shall require the asymptotic behaviour of the auxiliary solution
at the edge. Consider the integral

φ∗(x, y, z) =
∫

Γ

ρ(l)φ̂ε(x, y, z; l)dl, (2.6)

where the sources of the field are concentrated along the contour Γ and have line
density ρ(l). We assume this density to be a continuous function having period equal
to the length of the contour Γ. Consider a small cylinder with local coordinates
τ, η, ξ. Let some intermediate state of the limit process is taken, i.e., the parameter
ε takes some small, but non-zero value. We assume that the radius of the cylinder
is larger than ε, but much smaller than k−1

0 ; in terms of perturbation theory, this
is the inner problem. The inner solution for φ∗ is, to leading order,

φ∗ ≈ −ρ(l)ε−1/2

2
Re[Log(

√
η + iξ − i

√
ε)− Log(

√
η + iξ + i

√
ε)]. (2.7)

We now take the limit as ε → 0, and introduce local cylindrical coordinates (r, ϕ)
defined as η = r cosϕ, ξ = r sin ϕ, to obtain the asymptotic behaviour at the edge,
that is in terms of perturbation theory, the inner limit of the outer solution. In the
outer coordinates φ∗ behaves as

lim
ε→0

φ∗ =
ρ(l) sin(ϕ/2)

r1/2
+ O(r1/2), (2.8)

when r → 0. Placing the source near the edge of the crack leads to an outer field
with asymptotic edge behaviour stronger, that is more singular, than the usual
conditions of Meixner (φ ∼ r1/2 as r → 0).

There are two equivalent ways to introduce the auxiliary solution. The first one
is to introduce a point source near the edge, and use the limiting procedure above.
The other is to formally introduce a solution having edge asymptotics stronger than
that usually allowed by the physically relevant edge conditions, that is, an overly
singular solution. This latter route is a bit cumbersome in the three dimensions,
where it is necessary to provide the oversingular behaviour at a single point of the
edge.

(c) Directivities of scattered and auxiliary fields

In the far field, the leading term of the scattered field is written as a modulated
spherical wave:

φsc(x, y, z) ∼ −eik0R

2πR
D(θx, θy; θin

x , θin
y ), (2.9)

where R =
√

x2 + y2 + z2, θx = arccos(x/R), θy = arccos(y/R), θin
x = arccos(kin

x /k0),
θin

y = arccos(kin
y /k0), and D is the directivity of the field.

Analogously, the far field of the auxiliary solution can be represented using its
directivity, it is distinguished by the hat decoration:

φ̂(x, y, z; l) ∼ −eik0R

2πR
D̂(θx, θy; l). (2.10)
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It is useful to note that Green’s formula can be used to express the directivity as
a Fourier-transform involving the scattered field. In this example it is the transform
of the normal derivative of the scattered field, the integral is taken over the crack
surface z = 0+.

The embedding formulae, that will be derived below, express the function D(θx, θy;
θin

x , θin
y ) in terms of D̂(θx, θy; l).

(d) Derivation of the embedding formula

We are going to derive the embedding formula in three steps: first we apply
differential operators to the total field, second we apply the uniqueness theorem,
and finally we use the reciprocity principle.

Consider the differential operators defined as

H = (Hx,Hy) = [∇+ ikin] =
(

∂

∂x
+ ikin

x ,
∂

∂y
+ ikin

y

)
. (2.11)

We now apply either of these operators, for definiteness we apply Hx, to the total
field φ (the solution to equations (2.1),(2.2),(2.3)). The function

φ(x, y, z) = Hx[φ(x, y, z)] (2.12)

has the following properties: it satisfies the Helmholtz equation (2.1), it contains no
incoming waves from infinity nor allows growth at infinity (note that Hx[φin] ≡ 0),
and furthermore φ = 0 on the crack surfaces. The conditions of the uniqueness the-
orem are satisfied, except for the edge condition. If the local asymptotic behaviour
of the field, φ, near the edge is that

φ ∼ K(l)r
1
2 sin

(ϕ

2

)
+O(r

3
2 ), then φ ∼ 1

2
K(l)r−

1
2 sinΘ sin

(ϕ

2

)
+O(r

1
2 ). (2.13)

Here Θ is the angle between the x-axis and the unit vector dl tangential to the
contour Γ (see Figure 1) and r, ϕ are local polar coordinates at the edge. That is,
φ has overly singular behaviour at the edge.

Comparing the asymptotic behaviour at the edge for the function φ in (2.13)
with that of the integral of the auxiliary functions, φ∗ in (2.8), one finds that the
combination

w(x, y, z) = φ(x, y, z)− 1
2

∫

Γ

K(l) sin Θ(l) φ̂(x, y, z; l)dl (2.14)

obeys the usual Meixner’s condition at the edge. Furthermore, this function obeys
the Helmholtz equation, the radiation condition, and the Dirichlet boundary condi-
tion. Therefore, we apply uniqueness to this combination, and thus w(x, y, z) ≡ 0.
From equation (2.12) we can now identify the function φ in terms of φ̂ and K(l) as

φ = Hx[φ] =
1
2

∫

Γ

K(l) sin Θ(l) φ̂(x, y, z; l)dl. (2.15)

This is a weak form of the embedding formula.
The function K(l) in (2.15) remains unknown, to generate the complete embed-

ding formula we must also express K(l) in terms of φ̂(x, y, z; l). Instead of having
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an incident plane wave let us take a point source of unit strength located at a point
(X,Y, Z), such that

X = R
kx

k0
, Y = R

ky

k0
, and Z =

√
R2 −X2 − Y 2.

We take the lengthscale R to be much greater than both the size of the scattering
region and the wavelength (being more accurate, we assume that the point (X,Y, Z)
is located in the far field). The incident field from the source is asymptotically a
plane wave having the form (2.2) multiplied by the factor −(4πR)−1eik0R. To find
K(l) we take the observation point, in the (x, y) plane, to be at a small distance
ε from the point l on the edge contour Γ. We multiply the value of the field at
the observation point by ε−1/2 and take the simultaneous limits that R → ∞ and
ε → 0. The result is K(l) from the formula (2.15) multiplied by −(4πR)−1eik0R.

We now use the reciprocity principle (Junger & Feit 1986) and interchange
the source and observation point in the limit procedure described above, that is,
the source is now near the edge, and the observation point is at (X, Y, Z). From
the reciprocity principle, the value of the field for this interchanged problem is
the same as that of the original problem. The diffraction problem with the point
source located near the edge is the auxiliary problem, and the solution under the
appropriate limit is φ̂(x, y, z; l). Hence the function K(l) is

K(l) = 4 lim
R→∞

[Re−ik0Rφ̂(X,Y, Z; l)]. (2.16)

Using equation (2.10), we obtain that

K(l) = − 2
π

D̂(θin
x , θin

y ; l). (2.17)

That is, the edge behaviour of the physical problem is represented in terms of the
far field of the auxiliary solution. We are now in a position where we can write the
directivity of the physical problem entirely in terms of that found for the auxiliary
problem.

We substitute the relation (2.17) into the embedding formula (2.15) to get:

Hx[φ] = − 1
π

∫

Γ

D̂(θin
x , θin

y ; l)φ̂(x, y, z; l) sin Θ(l) dl. (2.18)

The left- and right-hand sides of this are now evaluated in the far field, the operator
Hx acting on the far-field of φ yields a coefficient ik0(cos θx + cosinx )D. The right
hand side yields the directivity D̂ from φ̂, after some cancellation one obtains the
embedding formula

D(θx, θy; θin
x , θin

y ) =

i
πk0 (cos θx + cos θin

x )

∫

Γ

D̂(θx, θy; l)D̂(θin
x , θin

y ; l) sin Θ(l)dl. (2.19)

So far we have worked entirely with Hx. It is interesting to note that another
embedding formula emerges by applying the operator Hy, and repeating the argu-
ments above. Then one obtains the embedding formula

D(θx, θy; θin
x , θin

y ) =
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− i
πk0

(
cos θy + cos θin

y

)
∫

Γ

D̂(θx, θy; l)D̂(θin
x , θin

y ; l) cosΘ(l)dl. (2.20)

The arguments remain the same when the boundary conditions on the crack are
chosen to be either Neumann or impedance conditions.

(e) Deriving embedding formulae in two dimensions

We now consider planar cracks in two dimensions, and we choose the (x, z)
plane to be that in which the scatterers are located. That is, we could utilize the
formulae of the earlier section where the scatterer now extends into the y direction
such that it has infinite length, and no variation in y, and we take a cross section
of the scatterer. Now φ is φ(x, z).

The derivation of an embedding formula in two dimensions is closely related
to the three dimensional case that we have just presented, but it has some special
features that are worth highlighting.

First, the auxiliary solutions should be redefined. Instead of a point source lo-
cated near the edge, a line source should now be taken. To maintain the asymptotic
behaviour

φ̂ ∼ r−1/2 sin
ϕ

2
+ O(r1/2),

local to the edge, the strength of the line source is −πε−1/2, and is located at a
distance ε from the edge. As in three dimensions, the limit as ε → 0 should be
studied.

Second, the directivity of the scattered field is now associated with a far-field
cylindrical wave, and the far field is typically

φsc(r, θ) ∼ D(θ, θin)
ei[k0r−π/4]

(2πk0r)1/2
, r2 = x2 + z2 (2.21)

An identical far field occurs for the auxiliary function, although the directivity is
then distinguished by the hat decoration.

Third, only the operator Hx can now be applied to the scattered field. The
embedding formula then expresses the directivity D(θ, θin) as a (discrete) linear
combination of several functions D̂(θ) rather than as an integral over some contour.

We will investigate several examples of embedding formulae for two dimensional
problems.

(f ) A weight function interpretation of the auxiliary functions, valid in two
dimensions

It is possible to generate a quite general approach to embedding formulae using
ideas based upon weight functions. This then translates directly across to elasticity
using the existing formalism available in that literature.

We now use the idea of the so-called weight functions Bueckner 1970, Rice
1989, Burridge 1976) that use overly singular solutions with the reciprocal theorem
to deduce singular behaviour (stress intensity factors) for arbitrarily loaded cracks
as a weighted integral over the crack faces.

The near edge behaviour of the field is vital to our proposed scheme. In elasticity,
the physically relevant situation is to take the local stress behaviour at the tip of
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the crack to be square root singular with respect to the radial distance from the
edge, σij ∼ Kr−

1
2 , and this behaviour is characterized by a stress intensity factor

K and some angular behaviour; this ensures that the energy at the crack tip/ edge
is finite. We can incorporate the idea of a source lying very close to the edge, as
used in section 2, and avoid explicitly taking some limiting procedure, by directly
considering unphysically singular solutions that have the displacements square root
singular at the edge, ûi ∼ K̂r−

1
2 . All these overly singular states and quantities

associated with them, are distinguished by the hat decoration. This overly singular
avenue is the usual approach taken when applying weight function ideas in fracture
mechanics. Analogous ideas can be utilized in acoustics and electromagnetism where
the physically relevant solutions have φ ∼ r1/2 and the overly singular solutions have
φ̂ ∼ r−1/2.

In acoustics, for a slit with Neumann boundary conditions on z = 0 along x < 0,
the asymptotic behaviour at the edge of the slit is that as r → 0:

φ(r, θ) ∼ K r
1
2 sin(θ/2) and φ̂(r, θ) ∼ K̂ r−

1
2 sin(θ/2), (2.22)

with r, θ as polar coordinates based at the edge, (θ = 0 is on the fracture plane
ahead of the slit), and K, K̂ are coefficients characterizing the edge behaviour. In
anti-plane elasticity K is the mode III stress intensity factor.

Both the theories of elasticity (see section 3)(c)) and acoustics have Green’s
formulae that relate two different states, for acoustics this is just

∫

S

(φ?φj − φφ?
j )njdS = 0. (2.23)

Here nj is the outward pointing normal to a source-free domain with surface S. We
assume the states are source-free, which they are when S is the domain exterior
to the cracks. The starred and unstarred fields are independent states in the body.
Later we choose one state to be more singular at one of the crack tips/edge than
the physically relevant solution, and it also satisfies zero boundary conditions on
each crack; we choose the other state to be the scattered physical field. The last
equation can be used instead of the reciprocal principle to link the edge behaviour
of the field due to plane wave incidence and the far-field behaviour of the auxiliary
function. We find (2.23) more convenient in the two dimensional case.

3. Examples of embedding formulae in two dimensions

(a) Scattering by several parallel strips

We consider N finite cracks/ strips, z = zj , a
−
j < x < a+

j for j = 1...N , all
concentrated in a compact region and let L denote the union of the crack lines. We
set one state to be an overly singular one, overly singular at z = zj , x = a+

j , with
the coefficient of the overly singular behaviour, K̂(a+

j ), set to be unity. The other
state is the scattered field due to an incident plane wave.

We shall require the directivity of this overly singular solution, and we denote
this by D̂(θ; a+

j ); the second argument denoting that it is generated by the overly
singular behaviour at z = zj , x = a+

j . We shall also require the directivity generated
by overly singular behaviour introduced at z = zj , x = a−j .
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For clarity, let us treat an acoustic problem with the cracks having the Neumann
condition ∂φ

∂z = 0 on them and incident field φin = exp[−ik0(x cos θin + z sin θin)].
Let us apply the reciprocal theorem, then

∫

L
φin

z (x)[φ̂(x; a+
j )]ds(x) = −

∫

crack tip at a+
j

(
φ̂nφsc − φsc

n φ̂
)

ndS. (3.1)

The integral over L is over all of the cracks, whilst the overly singular solution
extracts only the behaviour at z = zj , x = a+

j . Using the known edge behaviour,
one obtains

πK(θin, a+
j ) =

∫

L
φin

z (x)[φ̂(x; a)]ds(x) (3.2)

this latter integral is related to the directivity of the overly singular state via

D̂(θ) =
i
2

∫

L
[φ̂(x; a)]φin

z (x)ds(x). (3.3)

One could view this as the spectrum of [φ̂(x; a+
j )], thus, and using a similar calcu-

lation for an overly singular state based at x = a−j , equation (3.2) becomes

πK(θin, a±j ) = −2iD̂(θin; a±j ). (3.4)

This illustrates an important and powerful property of overly singular states which
is that the edge behaviour of the physical problem, characterized by K(a±j ), can be
deduced from the far field of the overly singular states.

As in section 2, we now introduce the differential operator Hx = ∂/∂x +
ik0 cos θin, and apply this to the physically relevant solution. So we consider φ =
Hx[φ(x)], and this generates an overly singular solution. The local behaviour at
each crack tip has φ ∼ Kr1/2, and applying Hx to this leads to the overly singular
local behaviour of φ at each edge; this is identified as φ ∼ ±K/2 r−1/2, with the
signs dependent upon which end of the crack we are considering. By considering
the local behaviour of the overly singular solutions that we initially introduced, φ̂
(2.22), and recalling that we specifically chose their coefficients K̂ ≡ 1 we see that
local to each crack tip (positioned at z = zj , x = a∓j ) φ = ±K(θin, a∓j )φ̂(x; a∓j )/2.
Finally, we invoke uniqueness (Jones 1986) and deduce that

φ(x) = Hx[φ(x)] = −1
2

N∑

j=1

[
K(θin, a+

j )φ̂(x; a+
j )−K(θin, a−j )φ̂(x; a−j )

]
, (3.5)

that is, it is a weighted function of the individual overly singular states. By analysing
the behaviour of this function one easily extracts the directivity, D(θ, θin), associ-
ated with φ, as just

D(θ, θin) =
N∑

j=1

[D̂(θin; a+
j )D̂(θ; a+

j )− D̂(θin; a−j )D̂(θ; a−j )]
πk0[cos θ + cos θin]

. (3.6)

This directivity relies upon the assumed far field cylindrical wave behaviour (2.21)
being correct, and in some circumstances, for example the semi-infinite crack of
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section 4 (a) one should exercise care when θ = π − θin, and the denominator of
(3.6) is zero. The resultant infinite directivity is connected with a non-uniformity in
the far field pattern and this then requires transition formulae in the form of Fresnel
integral corrections (see Noble 1958). For the analogous situation of θ = π − θin in
the finite length crack example of section 5 the numerator is also zero, and a finite
limit emerges and the directivity retains its validity. Thus our directivity has the
same advantages and disadvantages as that deduced in the conventional manner, it
is completely equivalent, but written in an alternative way.

The scheme for extracting the directivity for N cracks for any θin is to solve
2N integral equations for each overly singular state (this is independent of θin) and
then manipulate the resulting directivity; this is a considerable saving numerically.

Often one can utilize underlying symmetries, that is, for a single crack along
z = 0, |x| < a, or any system symmetric about the z axis, D̂(θ;−a) = D̂(π − θ; a)
so only N overly singular solutions are required.

The scheme presented above for generating embedding formulae is very versatile
and carries across to cracks in elasticity, as well as cracks beneath wavebearing
surfaces, and one can easily alter the boundary conditions along the cracks. For
instance, a similar calculation for N cracks with the Dirichlet condition φ = 0 as
the boundary condition on each crack gives:

D(θ, θin) =
N∑

j=1

[D̂(θin; a−j )D̂(θ; a−j )− D̂(θin; a+
j )D̂(θ; a+

j )]
πk0[cos θ + cos θin]

, (3.7)

where

D̂(θ) =
−i
2

∫

L
[φ̂z(x; a)]φin(x)ds(x),

and the angular argument of φin(x) is taken to be θ.
One can alter the situation to have some cracks with the Dirichlet and others

with the Neumann condition. If the cracks have Dirichlet conditions on the upper
surface, and Neumann on the lower surface then one has to alter the edge behaviour.
For local behaviour about the edge of a crack lying along x > 0, z = 0, one has that
φ ∼ Kr1/4 sin(θ/4) and then embedding formulae follow again.

(b) Scattering by several parallel cracks above a wavebearing surface

Let us leave aside most of these generalizations, and consider N Neumann cracks
above a wavebearing surface, the simplest prototype has the boundary condition
φz + αφ = 0 on z = 0; see figure 3.

We take the incident field to now include a contribution from the wavebearing
surface, that is,

φin(x, z) = e−ik0x cos θin
(
e−ik0z sin θin

+Reik0z sin θin
)

, R =
ik0 sin θin − α

ik0 sin θin + α
. (3.8)

The application of the reciprocal theorem leads again to the same representa-
tion (3.5), although now the scattered field has the additional behaviour that
φsc(x, z) ∼ A± exp(−αz± ix

√
α2 + k2

0) as x → ±∞, that is, we have surface waves
that propagate along the surface. Their amplitudes also follow from an embedding
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12 R. V. Craster, A. V. Shanin & E. M. Dubravsky

Figure 3. A schematic of a compact array of parallel cracks with incident wave θin.

formula:

A±(θin) =
N∑

j=1

[D̂(θin; a+
j )Â±(a+

j )− D̂(θin; a−j )Â±(a−j )]

π[±
√

α2 + k2
0 + k0 cos θin]

(3.9)

where Â±(a±j ) are the surface wave amplitudes created by overly singular solutions
at a±j . The directivities and scattered surface wave amplitudes created by incoming
surface waves follow from the formulae we have already deduced where k0 cos θ is
replaced by ±

√
k2
0 + α2, that is, θ is now a complex angle.

(c) Elastic cracks

Diffraction caused by elastic waves interacting with cracks is both interesting,
and practically important in areas such as non-destructive testing and the evalu-
ation of structures. There are now shear and compressional waves that couple at
boundaries, and additionally surface, Rayleigh, or interfacial, Stoneley, waves can
occur. Thus we expect to get embedding formulae that incorporate two diffraction
coefficients (one for compressional and one for shear waves) and possibly a surface
wave amplitude coefficient. For brevity we shall consider parallel, co-planar elastic
cracks in an infinite medium, since they are co-planar this means that we can uti-
lize symmetry (or anti-symmetry) about the fracture plane and this can be used
to decouple the governing integral equations; the more general case can also be
considered, but is somewhat more lengthy. Surface wave behaviour is illustrated
by allowing one crack to be semi-infinite, and Rayleigh waves can then propagate
along the crack faces.

For isotropic, homogeneous elasticity the governing equations are

σij,j = −ρω2ui where σij = λεkkδij + 2µεij with εij =
1
2
(ui,j + uj,i),

time harmonic e−iωt dependence is assumed here and henceforth. The stresses
and displacements are σij and ui, and we consider isotropic media (although the
methodology carries across to anisotropy); µ and λ are the Lamé constants, and ρ
the density. We adopt a Cartesian geometry x, y, z corresponding to 1, 2, 3. It is of-
ten convenient to utilize displacement potentials that follow from u = ∇χ+∇×ψẑ,
that is,

∇2χ + k2
dχ = 0, ∇2ψ + k2

sψ = 0
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Embedding formulae 13

where the compressional and shear wavenumbers are given as k2
d = ρω2/(λ + 2µ),

k2
s = ρω2/µ. Although the potentials satisfy uncoupled equations all realistic prob-

lems are posed in terms of, or have boundary conditions involving, the physical
stresses or displacements and this couples the shear and compressional components
after reflection at interfaces.

The scattered far field for the compressional and shear potentials in elasticity
are the same as (2.21), where there are now two directivities Dd(θ, θin), Ds(θ, θin)
for each type of incident wave, that is, we could have incident compressional, shear,
or under some circumstances Rayleigh or interfacial waves. There may also be
amplitude coefficients related to surface or interfacial waves if these are in the
physical problem.

In elasticity the near-edge behaviour is similar to that in acoustics, but with
algebraically more complex angular behaviour, for simplicity, let us consider the
opening, tensile, mode for a stress-free crack, then on the fracture plane z = 0 for
x > 0

σ33(x, 0) =
K1

(2πx)
1
2
, σ̂33(x, 0) =

K̂1

(2πx3)
1
2

(3.10)

and along the crack, x < 0,

u3(x, 0) = − k2
s

µ(k2
d − k2

s)
K1

(−x

2π

) 1
2

, û3(x, 0) = − k2
s

µ(k2
d − k2

s)
K̂1

(−2πx)
1
2
. (3.11)

Note, it is conventional to take the opening and shear crack modes to occur for
cracks lying in the (x, y) plane, or choice of axis labels differs and our opening
cracks lie in the (x, z) plane. Here K1 is the mode one, opening mode, stress intensity
factor, the full angular behaviours, and the corresponding shear mode formulae, can
be found in Atkinson & Craster (1995) and the references therein.

Let us consider the symmetric problem so σ̂xz = 0 along the fracture plane,
σ̂zz = 0 on the cracks and û2 is unknown on the cracks.

Following the same prescription as for acoustics, and using the reciprocal theo-
rem ∫

S

(σ?
ijui − σiju

?
i )njdS = 0,

we find, for overly singular behaviour at a+
j that

∫

L
e−ikdx cos θû3(x, 0)dx = −k2

sK1(θ; a+
j )

2µ(k2
d − k2

s)
=
−2ik2

sD̂d(θ; a+
j )

2k2
d cos2 θ − k2

s

, (3.12)

∫

L
e−iksx cos θû3(x, 0)dx =

−iD̂s(θ; a+
j )

cos θ sin θ
. (3.13)

If σin
33 = exp(−ikd cos θin− ikdz sin θin) then by utilizing the operator Hx = ∂/∂x +

ikd cos θin, and uniqueness again, one finds that

Hx[χ(x)] = −1
2

N∑

j=1

[
K1(θin; a+

j )χ̂(x; a+
j )−K1(θin; a−j )χ̂(x; a−j )

]
. (3.14)
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14 R. V. Craster, A. V. Shanin & E. M. Dubravsky

An identical formula follows involving ψ, where ψ replaces χ. Looking at the far-field
then gives the embedding formulae

Dp,s(θ, θin) =
1
2

N∑

j=1

[K1(θin; a−j )D̂p,s(θ; a−j )−K1(θin; a+
j )D̂p,s(θ; a+

j )]
i[kd,s cos θ + kd cos θin]

, (3.15)

with K1 related to the directivity of the overly singular state via (3.12). If one crack
is semi-infinite, say the Nth crack, we ignore terms involving a−N and the compres-
sion and shear amplitudes of the Rayleigh wave, χ(x, 0) ∼ Ape

−ikrx, ψ(x, 0) ∼
Ase

−ikrx that propagates along the crack face towards minus infinity follow from

Ap,s(θin) =
1
2

′∑N

j=1

[K1(θin; a−j )Âp,s(a−j )−K1(θin; a+
j )Âp,s(a+

j )]
i[−kr + kd cos θin]

. (3.16)

Here Â(a±j ) is the Rayleigh wave amplitude generated by the overly singular state at
x = a±j and kr is the Rayleigh wavenumber, and the

∑′ denotes that we ignore the
term involving a−N . Clearly, embedding is a general property of diffraction, whether
it be in acoustics, elasticity or electromagnetism and it encompasses surface wave
propagation.

4. Comparison with exact solutions

(a) The Sommerfeld problem

The classical problem of a plane wave incident upon an acoustically hard half
plane lying along −∞ < x < 0 on z = 0, where the incident field is

φin(x, z) = exp(−ik0x cos θin − ik0z sin θin) (4.1)

has been treated by many authors, and is a clear pedagogical example for us to
begin with. The full solution details are in, say, Noble (1958), but let us assume
that we were in ignorance of the full solution, and that we could only calculate the
overly singular solution.

The overly singular solution is determined using half-range Fourier transforms,

Φ̂′+(ξ) =
∫ ∞

0

φ̂z(x, 0)eiξxdx, Φ̂−(ξ) =
∫ 0

−∞
φ̂(x, 0)eiξxdx, (4.2)

in brief, we use the symmetry of the problem, and consider z > 0. The plus (minus)
subscripts denote functions analytic in the upper (lower) complex ξ planes, and
denote the transforms of quantities that are unknown along z = 0 for x > 0 (x <
0). Fourier transforming the governing equations, and applying the zero boundary
conditions φ̂z = 0 for x < 0 and φ̂ = 0 for x > 0 on z = 0, we then get a
Wiener–Hopf equation relating the unknown transforms

−γ−(ξ)Φ̂−(ξ) =
Φ̂′+(ξ)
γ+(ξ)

= −√πi−
1
2

+ . (4.3)

We use the hat decoration to denote the solutions to the overly singular problem
and i

1
2
+ = exp(iπ/4). Here γ±(ξ) = (ξ ± k0)

1
2 (the functions have branch points
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at ±k0) and we have used the local behaviour near the edge which is that these
solutions are unphysically singular at the edge, φ̂ ∼ r−1/2, to deduce, via Liouville’s
theorem, that the right hand side of this functional equation is a constant. The form
of this constant has been chosen so that φ̂(r, θ) ∼ r−1/2 sin θ

2 . We also deduce the
far field behaviour of the overly singular solution as

φ̂(r, θ) ∼ D̂(θ)
ei[k0r−π/4]

(2πk0r)
1
2

, D̂(θ) = k0 sin θ Φ̂−(−k0 cos θ). (4.4)

We apply the embedding formula (3.6) for a single crack with a+
j = 0, and no

term involving a−j , then

D(θ, θin) =
D̂(θ)D̂(θin)

(cos θ + cos θin)
1

πk0
(4.5)

which, using (4.4), is the well-known solution (Noble 1958). Also, noting the evident
symmetry of the problem, we can apply the Dirichlet embedding formula (3.7) with
a−j = 0 and no term involving a+

j and this again recovers (4.5). Thus the directivity
for the physical problem, which depends upon two angular variables the angle of
incidence and that of the observer, is the product of the directivities of the overly
singular problem, each a function of a single variable.

A direct generalization of the above can be used to verify the surface amplitude
embedding formula (3.9): let us consider a semi-infinite Neumann strip lying parallel
to, and a distance d, above a wavebearing surface, that is, φz = 0 on z = d, x < 0
and φz + αφ = 0 on z = 0 −∞ < x < ∞. It is convenient to introduce a function,
L(ξ),

L(ξ) =
γ − α

(γ − α)− (γ + α)e−2γd
(4.6)

which has the property that L → 1 as |ξ| → ∞ and one can split this function
into a product of functions, L = L+L−, analytic in the upper (lower) halves of
the complex ξ plane such that L+(−ξ) = L−(ξ). The overly singular problem is
translated via Fourier transforms to the functional equation

− γ−(ξ)
2L−(ξ)

Φ̂−(ξ) =
L+(ξ)
γ+(ξ)

Φ̂′+(ξ) = −
√

π

i
1
2
+

(4.7)

where now Φ̂− is the transform of the unknown jump in φ̂ across z = 0, x < 0. This
is easily unwrapped to give the directivity and surface wave amplitude (in x > 0)
as

D̂(θ) =
k0 sin θ(πi)

1
2
+

L−(k0 cos θ)γ+(k0 cos θ)
e−ik0d sin θ, Â =

(π/i)
1
2
+eαdL+(

√
k2
0 + α2)

γ+(
√

k2
0 + α2)L′(−

√
k2
0 + α2)

,

(4.8)
the prime denoting differentiation with respect to ξ, applying (3.9) gives a surface
wave amplitude (in x > 0) that is the same as that obtained from treating a
subsurface semi-infinite strip with incoming wave (3.8).
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16 R. V. Craster, A. V. Shanin & E. M. Dubravsky

(b) Scattering by a half-plane crack in an elastic medium

We consider waves incident upon a stress free semi-infinite crack lying on z = 0,
x < 0 and we follow our recipe above. For a crack in an unbounded material we
can split the problem into symmetric and antisymmetric pieces (Achenbach et al
1982) and, for brevity we shall consider the symmetric case:

σsc
xz = 0 on x = 0, u3 = 0 on x > 0, (4.9)

σsc
zz = − exp[−ikdx cos θin − ikdz sin θin] on x < 0. (4.10)

Let us deduce the directivities and Rayleigh wave amplitude on the crack faces
using only our knowledge of the overly singular state. We define T̂+ as the un-
known tensile stress along the fracture plane, and Û− as the unknown normal crack
displacement, then the following functional equation is deduced:

γd+(ξ)T̂+(ξ)
(ξ + kr)L+(ξ)

=
2µ(k2

d − k2
s)(ξ − kr)L−(ξ)Û−(ξ)

γd−(ξ)k2
s

= −i−
1
2

+

√
2 (4.11)

where T̂+ and Û− are the half range Fourier transforms of the unknown stress σzz

on the fracture plane ahead of the crack, and the unknown opening displacement
on the crack itself, defined analogously to (4.2). The displacement is unphysically
singular at the crack tip and the local behaviour there is given by (3.11) with
K̂1 = 1.

For equation (4.11) we require the following function:

L(ξ) =
(2ξ2 − k2

s)2 − 4ξ2(ξ2 − k2
s)

1
2 (ξ2 − k2

d)
1
2

2(k2
d − k2

s)(ξ2 − k2
r)

. (4.12)

This function has no zeros in the cut plane and can be split such that L±(ξ) → 1
as |ξ| → ∞, and L−(−ξ) = L+(ξ) (see for instance Achenbach et al 1982). The
wavenumbers kr are the Rayleigh wavenumbers that are the zeros of the numerator
of L(ξ).

The embedding formulae (3.15-3.16) give

Dd(θ, θin) =
−K1(θin; 0)D̂d(θ)

2ikd(cos θ + cos θin)
=

µ(k2
d − k2

s)(2k2
d cos2 θ − k2

s)
2k4

skd(cos θ + cos θin)
Û−(−kd cos θ)Û−(−kd cos θin),

Ds(θ, θin) =
−K1(θ; 0)D̂s(θ)

2i(ks cos θ + kd cos θin)
=

µ(k2
d − k2

s) sin θ cos θ

k2
s [ks cos θ + kd cos θin]

Û−(−ks cos θ)Û−(−kd cos θin)

and
i(−kr + kd cos θin)Ap,s(θin) = −K1(θin; 0)Âp,s/2.

After some manipulation these can be shown to be identical to the directivities
that are deduced by using Wiener-Hopf directly on the physical problem; using
the overly singular state is a viable approach for deducing all the features of the
scattering problem.
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5. Numerical simulations

It is a straightforward matter to solve the standard integral equations in acoustics,
elasticity and electromagnetism numerically; typically one utilizes a Chebyshev ex-
pansion of the unknown. The Dirichlet and Neumann cases from acoustics are proto-
typical examples as the same expansion functions are used in many other examples
allbeit in more complicated scenarios, say, inclined subsurface cracks in elasticity
Van der Hijden & Neerhoff (1984); Craster (1998). Alternatively, one could trans-
form the integral equation to a second-kind one (Porter & Chu 1986), indeed there
are several numerical methods one could adopt: boundary integral methods, finite
elements, finite differences; the precise numerical method is irrelevant to the embed-
ding formulae themselves. However, it is important to demonstrate that the overly
singular states do not introduce new numerical difficulties or instabilities. Here we
treat a Dirichlet example from acoustics, that is, a single finite length crack with
φ = 0 on |x| < 1 on z = 0. The standard integral equation for an incoming plane
wave φin = exp[−ik0(x cos θin + z sin θin)] is

exp(−ik0x
′ cos θin) =

∫ 1

−1

i
4π

∫

C

[
∂φsc(x, 0)

∂z

]
eik(x−x′)
√

k2
0 − k2

dk dx (5.1)

where C is the real axis, indented below (above) the branch points on the positive
(negative) real axis, the scattered field is φsc. The unknown [φsc

z (x, 0)] is then ex-
panded in some suitable basis function, see for instance de Hoop (1955) and many
subsequent authors. We set

[φsc
z (x, 0)] = 2

∞∑
n=0

an
Tn(x)

(1− x2)
1
2
, and Tn(x) = cos(n cos−1 x), (5.2)

where the coefficients an are unknown and, notably,
∫ 1

−1

Tn(x)
(1− x2)

1
2
eikx = πeiπn/2Jn(k).

Thus we can transfer the numerical setting from the physical to the spectral, k,
domain. We multiply (5.1) by Tm(x′)/(1− x′2)

1
2 and integrate over the crack with

respect to x′ to obtain a linear system of equations bm =
∑∞

n=0 Kmnan. This
system is truncated at some N , typically O(2k0) and one can check convergence by
increasing N . The bm and Kmn are

bm = e−iπn/2Jn(k0 cos θin), Kmn =
i

2

∫

C

eiπ(n−m)/2 Jn(k)Jm(k)√
k2
0 − k2

dk; (5.3)

this latter integral can be simpified to lie along the positive real axis, and the
slow convergence of the resulting integral can be accelerated by extracting known
integrals. One extracts the directivity, D(θ, θin), as

D(θ, θin) = −i

N∑
n=0

anπe−iπn/2Jn(k0 cos θin).

Let us now consider the overly singular state. The overly singular state in-
troduces a source at x = 1, and the integral equation (5.1) then requires some
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18 R. V. Craster, A. V. Shanin & E. M. Dubravsky

adjustments; it is natural to utilize generalized functions to deal with the singu-
larity at x = 1. We define xn

+ = xnH(x), xn
− = (−x)nH(−x) where H(x) is the

Heaviside function, and then we use the known edge behaviour at x = 1 to deduce
the integral equation

(x′ − 1)−1/2
+ = −

∫ 1

−1

[
∂φ̂(x, 0)

∂z

] ∫

C

i
4π

√
k2
0 − k2

eik(x−x′)dkdx. (5.4)

We pose an expansion of the form

1
2

[
∂φ̂(x, 0)

∂z

]
=

1√
2
(1 + x)−

1
2 (1− x)−3/2

+ +
∞∑

n=0

an
Tn(x)

(1− x2)
1
2
, (5.5)

that is, we explicitly introduce the imposed overly singular edge behaviour in the
basis expansion. After manipulating the integrals, utilizing the identities

∫ 1

−1

eikx(1 + x)−
1
2 (x− 1)−3/2

− dx = πk(J1(k)− iJ0(k))

and ∫ 1

−1

(x− 1)−
1
2

+ Tm(x)(1− x)−
1
2− (1 + x)−

1
2 =

π

2
√

2
, (5.6)

we then find that for the overly singular solution bm in (5.3) is replaced by

b̂m = − 1
2
√

2
− i√

2
e−imπ/2

∫

C

k(J1(k)− iJ0(k))
Jm(k)

(k2
0 − k2)

1
2
dk. (5.7)

Once again, this integral can be manipulated to lie along the positive real axis, and
known integrals can be subtracted from it to improve numerical convergence. We
then solve a linear system of equations, as above, and extract the directivity D̂(θ).

Numerically evaluating the directivities for the overly singular state and utilizing
them in the embedding formula, and comparing with those directivities evaluated
directly, yields identical results (see figure 4). The advantage is that the embedding
formula is very much more rapid to evaluate across many θin.

6. High frequency asymptotics

One is not limited to dealing with exact, or numerical, solutions to the overly
singular states, it is perfectly viable to adopt an asymptotic approach for, say,
high frequencies and utilize this within the embedding framework. So although
the embedding formulae themselves are valid for arbitrary ratios of wavelength
to the size of the scatterer, it is also worthwhile constructing the short wave/
high frequency approximation and applying it to the embedding formulae. For high
frequencies, an explicit approximation for the auxiliary function φ̂ is easy to find and
this enables us to write down a complete approximate solution for the diffraction
problem.

The embedding formula for the directivity is in the same form as directivi-
ties that arise from application of the geometric theory of diffraction (Keller 1962;
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Figure 4. Typical directivities obtained using the direct (solid lines) and embedded
overly singular state (+) approach. These are for k0 = 10 and θin = π/6.

Achenbach et al 1982). The embedding approach therefore provides another math-
ematical route to these asymptotic solutions, and provides justification for their
efficiency and accuracy even at mid to low frequencies when they might be sup-
posed to be poor.

As an illustration, let us briefly consider the Dirichlet acoustic problem of section
5, we can utilize the semi-infinite overly singular state, analogous to that of section
4(a), to deduce

D̂(θ) ∼ (2πk0)
1
2 cos

(
θ

2

)
exp[i(π/4− k0 cos θ)]. (6.1)

This is the directivity due to overly singular behaviour at z = 0, x = 1. As one
naturally expects from our knowledge of the non-singular physical applications of
GTD (Keller 1962) this turns out to be a very good asymptotic approximation to
D̂(θ). In figure 5 we show a numerical comparison for k0 = 4, that is, for quite
low frequencies. For higher frequencies the asymptotic and numerical solutions are
virtually indistinguishable. This also provides a good verification of our numeri-
cal method for extracting the overly singular states. Incidentally, this provides an
asymptotic representation for the “stress intensity factor”, K of the physical prob-
lem via K(θin, 1) = −2iD̂(θ)/π, and that is a useful and not often appreciated
property of overly singular states. Inserting this asymptotic directivity, D̂, in the
embedding formulae yields the well-known result (Keller 1962)

D(θ, θin) ∼
−2i

[
cos

(
θ+θin

2

)
cos(k0[cos θ + cos θin])− i cos

(
θ−θin

2

)
sin(k0[cos θ + cos θin])

]

cos θ + cos θin
,

and this asymptotic result is virtually indistinguishable from the numerically gen-
erated curves in our earlier figure 4. That is partly because the field generated by
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Figure 5. We show in (a) the real, and in (b) the imaginary, parts of D̂(θ) generated as
the numerical solution of the integral equation of section 5 using the directivity deduced
using (5.7), solid line, and from (6.1), as dotted line; this is for k0 = 4.

Figure 6. The geometry for the planar case.

the overly singular state satisfies the condition φz = 0 on z = 0 for x < −1 to
a high order. The point of this is that one can utilize the overly singular state to
deduce valuable details of the physical problem, and an asymptotic representation
of the overly singular state can yield very good usable results.

Consider now the general planar three dimensional example from section 2. The
calculation of the directivity function D̂(θx, θy; l) is a very complicated problem.
Using the approach of section 2, if the wavelength is much smaller than the char-
acteristic size of the scatterer then the behaviour local to the edge dominates, and
the more remote parts of the crack do not play an important role in diffraction. It is
then natural to approximate D̂ by the corresponding function for a half-plane crack.
Using the exact solution of the half-plane problem with point source incidence one
finds that,

D̂(θx, θy; l) ≈ −√−πi
(√

k2
0 − k2

τ + kη

)1/2

ei(kxx0+kyy0) (6.2)

where (x0, y0) are the coordinates of the point of the edge, kη and kτ are the

Article submitted to Royal Society



Embedding formulae 21

projections of the wavenumber k on the directions normal to Γ and tangential to
it, respectively. These values can be calculated using the relations

kη = −k0 cos θx sinΘ+k0 cos θy cos Θ, kτ = k0 cos θx cosΘ+k0 cos θy sinΘ. (6.3)

We then substitute the function (6.2) into the embedding formula (2.19) and con-
sider the exponential factor. The integrand oscillates rapidly everywhere except at
stationary points of Γ, that is, where the vector dl is orthogonal to the difference
of the vectors k = (k0 cos θx, k0 cos θy) and kin = −(k0 cos θin

x , k0 cos θin
y ). These

stationary points provide the main terms in the asymptotic behaviour of the field.
Let us consider the case k 6= kin. There are two stationary points, I and II, at

which Γ is orthogonal to k − kin (see Fig. 6). At each point we (first, say, for the
point I) use the local coordinates η and τ , and calculate the components of the
vectors (kτ , kη) and (kin

τ , kin
η ) using the transformation formulae (6.3). Note that

kτ = kin
τ .

Using the method of stationary phase we obtain

DI ≈ De
I ×Da

I ×Dc
I , (6.4)

where De
I , Da

I and Dc
I are the exponential, angular and curvature factors, respec-

tively:

De
I = exp{−ik0[x0(cos θx + cos θin

x ) + y0(cos θy + cos θin
y )]},

Da
I =

(
√

k2
0 − k2

τ − kin
η)1/2(

√
k2
0 − k2

τ + kη)1/2

kη − kin
η

,

Dc
I =

(
πi

(kη − kin
η )dΘ/dl

)1/2

.

Analogously, the term corresponding to the stationary point II (and all other
stationary points, if there are any others) should be estimated, and the sum over
all of them should be taken.

The expression (6.4) has the structure of the classical ray asymptotics of the
Geometrical Theory of Diffraction (Keller 1962).

7. Concluding remarks

Overly singular states are clearly a useful device for extracting directivities us-
ing embedding, and allows for a physical interpretation in terms of a line or point
source incidence. We have demonstrated that embedding is related to high frequency
asymptotic techniques, and that it is numerically feasible to utilize the overly sin-
gular states within conventional numerical schemes. The approach is also useful in
combination with Wiener-Hopf techniques and embedding is clearly applicable to
elasticity and surface waves. Thus embedding should become a method of choice
when solving integral equations in diffraction theory.
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