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Abstract

A new method is proposed for deriving embedding formulae in 2-D diffraction
problems. In contrast to the approach developed in [7], which is based on a
differential operator, here a pseudo-differential, i.e., a non-local operator is ap-
plied to the wave field. Using this non-local operator a new embedding formula
is derived for scattering by a single wedge. The formula has uniform structure
for all opening angles, including angles irrational with respect to π; the earlier
theory, [7], was valid only for rational angles.

1 Introduction

For a general 2-D diffraction problem, with piecewise linear scatterers, the main
unknown to be determined is the diffraction coefficient, which is a function de-
pending both on the angle of incidence and the angle of observation/scattering.
An embedding formula represents the diffraction coefficient in the form of a
combination of several auxiliary functions each of which has a smaller number
of arguments. Possible choices for these auxiliary functions are those created by
edge Green’s functions, i.e. the directivities of multipole sources located at the
edges of the scatterer; these then depend just on a single angle, the scattering
angle. Historically, an embedding formula was first introduced in [1] for the
problem of acoustic diffraction by a strip and other contemporaneous applica-
tions were to diffraction by a penny-shaped crack in an elastic solid [2]. More
recently the embedding technique has been developed for more complicated
structures [3, 4, 5, 6, 7].

The authors have proposed a simple derivation of an embedding formula [7]
for scattering by polygonal shapes. The method is based on applying a differen-
tial operator to the wave field. Unfortunately, the operator can only be applied
to scatterers containing rational (with respect to π) opening angles. To be pre-
cise the obstacle should be composed of several polygons, whose neighbouring
sides subtend interior angles equal to πqj/pj , where qj , pj are integers. The
denominators pj play an important role in the method, since the order of the
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embedding differential operator should be a multiple of all pj . Application of
an operator of high order forces the use of a requisite high order edge Green’s
function and the resulting embedding formulae consist of summations [7]. It
means that, for example, for a single wedge, the form of the directivity pro-
vided by embedding formula is very different for angles equal to, say, 2π and
15π/8. Moreover, this “traditional” embedding cannot be applied to irrational
(with respect to π) opening angles. Such a situation is not particularly satisfac-
tory since the known exact solution for scattering by a single wedge possesses a
simple “embedding” structure irrespective of the opening angle.

Our current paper revisits the wedge scattering problem and reveals the con-
nection between the wedge solution and the embedding formula. Namely, we
demonstrate that it can also be solved by applying a new embedding method
based solely on pseudo-differential operators. We introduce a class of pseudo-
differential operators, study their properties, and show that the embedding dif-
ferential operators introduced in [7], for rational angles, are just a special case
of this more general class of operators. We also find that the pseudo-differential
operators are harder to apply to, say, polygonal scatterers, than the differential
ones and so the results can, at present, only be directly used for the case of a
single wedge.

2 Formulation of the problem

Here we consider a sample scattering geometry, which is a wedge occupying the
sectorial area 0 < ϕ < Φ, 0 < r < ∞. Cartesian coordinates are introduced,
such that the positive x direction corresponds to ϕ = 0, and the positive y
direction to ϕ = π/2. The field in the wedge obeys the Helmholtz equation

∆u + k2
0u = 0 (1)

with the time dependence of all variables having the form e−iωt which is omitted
henceforth. The boundary conditions along the wedge faces could belong to any
of three commonly used types (i.e. Dirichlet, Neumann or impedance), but,
for brevity and definiteness, we shall present the approach only for Dirichlet
conditions. The edge (Meixner’s) and radiation conditions are formulated in
the usual way [7].

The wedge is assumed to be illuminated by an incident plane wave

uin = e−ik0r cos(ϕ−ψ), (2)

where ψ is the angle of incidence, such that 0 < ψ < Φ. As is typical for a
diffraction problem, the field is decomposed into the geometrical part consisting
of the incident and reflected waves, and the scattered field, which is described
by the far-field asymptotics

u = D(ϕ,ψ)
eik0r−iπ/4

√
2πk0r

, (3)
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where D is the diffraction coefficient or equivalently the directivity. The main
task is to find the directivity which, for the wedge problem, is known for all basic
boundary conditions. Deriving the embedding formula for a wedge allows us to
explore the application of the pseudo-differential operator and check whether it
does indeed replicate the exact solution.

3 The pseudo-differential operator

We study operators whose general form is as follows:

K[u](x, y) =
∫∫

u(x′, y′)K(x′ − x, y′ − y)dx′ dy′. (4)

In the operators used here the kernel is a distribution localized on some con-
tour Γ encircling the origin. In our case the distribution is a sum of a Dirac
delta-function and its derivative with respect to the normal to Γ. Thus, the
distribution is defined as a functional

K[w](r′) =
∫

Γ

(K ′(l)w(r + r′) + K ′′(l)∂nw(r + r′))dl, (5)

where w is an arbitrary smooth test function, l is a coordinate along the con-
tour Γ, r = r(l) is the radius vector of a point on Γ having coordinate l, n = n(l)
is the unit vector normal to Γ, and K ′, K ′′ are the amplitudes of the delta-
function and its derivative.

We now specify the contour Γ and the functions K ′ and K ′′. The contour
is taken to be a loop encircling the origin (see Fig. 1). The straight parts of
the loop are stretched close to the positive x half-axis, and the circular part
has vanishingly small radius. Note that the positive x half-axis is parallel to a
wedge face. Such a contour is a generalization of the integral of some function
along the positive x half-axis if the function has a non-integrable singularity at
the origin. The circular part of the integral plays the role of regularization of
the integrals related to the straight parts.

a
r

G

n

x

y

Figure 1: Contour Γ

The functions K ′ and K ′′ are defined as follows:

K ′(l) = −∂nUµ(r(l)), K ′′(l) = Uµ(r(l)). (6)
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Here Uµ(x, y) is a function defined in the vicinity of the contour:

Uµ(r) = H(1)
µ (k0ρ) cos[µ(π − α)], (7)

in which ρ and α are polar coordinates of the vector r, i.e.

r = (ρ cos α, ρ sin α), ρ = ρ(l), α = α(l).

We assume that the coordinate α is continuous on the contour and takes values
from the interval (0, 2π). The operator K depends on the continuous real pa-
rameter µ, so we shall denote this operator as Kµ. In the case of a single wedge
µ should be chosen to be equal to mπ/Φ, where m = 1, 2, 3 . . . The simplest
embedding formula is obtained for m = 1.

We now discuss some immediate properties of the operator Kµ. The integral
in (4) is a convolution, therefore it commutes with the differentiations with
respect to the coordinates and with the Helmholtz operator. The trigonometric
function in (7) is chosen to have an obvious symmetry Uµ(ρ, α) = Uµ(ρ, 2π−α).
This choice enables one to eliminate the integral of ∂nu along the straight parts
of the contour, since the normal derivatives of u on two straight branches are
opposite to each other.

The integral (5) has a recognizable Green’s form
∫

Γ

(Uµ∂nw − w ∂nUµ)dl

(note that Uµ is itself a solution of the same Helmholtz equation), therefore the
path can be deformed provided the singularity of the function Uµ is not crossed.
This possibility can be used for continuation of Kµ[u] as follows. Let u(x, y)
be the wave field in a wedge area. An immediate application of (4, 5) to find
Kµ[u](r) is possible only when the contour Γ + r lies completely in the wedge
area. Obviously, this is true only for the points with the polar angle ϕ lying
between 0 and π. To continue Kµ[u] use another contour, for example the one
shown in Fig. 2 in the right. The figure shows the areas where the operator is
defined by corresponding contours. Note that in the area where both contours
are applicable, the values of the operators defined by them are equal to each
other, i.e. the contour in the right provides a continuation of the operator. It
is quite clear that one can continue the operator Kµ[u] into any point of the
sectorial area.

4 Properties of the operator

We formulate the properties of the operator Kµ in the form of several proposi-
tions. In this section we study Kµ[u] as a wave field in the wedge. Proposition 1
states that this function obeys the Helmholtz equation. Proposition 2 establishes
a connection with the previous work by the authors [7] related to the differential
operators. Proposition 3 demonstrates a symmetry of the operator. Although
it is introduced to satisfy conditions on the face ϕ = 0, it can be converted into
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Figure 2: Transformation of the contour Γ for continuation of Kµ[u]

a similar operator for the face ϕ = Φ. Proposition 4 shows how the operator
acts on the incident wave. Propositions 5 and 6 concern the boundary condi-
tions obeyed by Kµ[u]. Proposition 7 is about the radiation condition and the
directivity, and, finally, Propositions 8 and 9 establish the edge asymptotics of
Kµ[u].

Proposition 1 The operator Kµ maps solutions of the Helmholtz equation into
solutions of Helmholtz equation.

This fact follows from the commutativity between Kµ and differentiations with
respect to the spatial coordinates.

Proposition 2 If µ = n, and n is a positive integer, then

Kn[u] = 4ei(n−1)π/2Tn

(
i

k0
∂x

)
, (8)

where Tn is a Tchebyshev polynomial.

Proof The relation
u =

i
4
K0[u], (9)

follows from the Green’s theorem. The function Kµ[u](r′) in a small vicinity of
some point can be rewritten in the following form:

Kµ[u](r′) =
∫

Γ∗
[Uµ(r− r′)∂nu(r)− u(r)∂nUµ(r− r′)]dl, (10)

where the contour Γ∗ is fixed for all points of the vicinity (in the case of integer
µ the contour Γ∗ can be chosen as a circle of non-zero radius with the centre at
r′). Obviously,

∂x′Kµ[u](r′) = −
∫

Γ∗
[U ′

µ(r− r′)∂nu(r)− u(r)∂nU ′
µ(r− r′)]dl, (11)
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where U ′
µ = ∂xUµ.

Applying the operator Tn(ik−1
0 ∂x) to (9), and using (11) several times, we

find that

Tn

(
i

k0
∂x

)
u =

i(−1)n

4

∫

Γ∗
[U∗

0 (r− r′)∂nu(r)− u(r)∂nU∗
0 (r− r′)]dl, (12)

where

U∗
0 = Tn

(
i

k0
∂x

)
U0 (13)

From the definition of Uµ, i.e. from (7), and the properties of Hankel func-
tions it is easy to establish the identity

Tn

(
i

k0
∂x

)
[U0] = eiπn/2Un. (14)

Combining (12) and (14), we obtain (8).
Note that the operator in the right-hand side is up to a multiplicative and

an additive constant equal to the operator introduced in [7] for rational angles.
Thus, Property 2 establishes a connection between the results obtained earlier
for pure differential operators and the results obtained in the present article.

Proposition 3 Let µ > 1/2 and introduce a field u that obeys the Helmholtz
equation and the radiation condition in some angular area. Then

Kµ[u] = −K̄µ[u] (15)

where K̄µ is the integral operator belonging to the class (4), (5), (6) with the
contour Γ̄ shown in Fig. 3. The kernel of K̄µ is given by the formula

Uµ(ρ, ᾱ) = H(1)
µ (k0ρ) cos[µ(π − ᾱ)]. (16)

The variable ᾱ is equal to α− π/µ and it takes values from 0 to 2π.

p m/
a

r G

Gn

Figure 3: Transformation of the contour of integration

Proof The new contour can be obtained from the old one by deformation.
The integral along the large arcs emerging during the transformation can be
neglected due to the radiation condition.

Property 3 can be used to study Kµ[u] on the face ϕ = Φ.
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Proposition 4 Let the function v(x, y) be a plane wave coming from direction
ψ, i.e.

v(r, ϕ) = exp{−ik0r cos(ϕ− ψ)} (17)

with 0 < ψ < 2π. Then

Kµ[v](x, y) = Gµ(ψ) v(x, y), (18)

Gµ(ψ) = 4e−i(µ+1)π/2 cos[µ(π − ψ)]. (19)

Proof The form of the relation (18) follows from linearity and translation
invariance, and thus one needs to prove only (19). Consider the whole plane,
i.e. let there be no wedge boundaries and take (x, y) = (0, 0).
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R

Figure 4: Contour Γ′

Close the contour Γ by connecting its ends by an arc of large radius Γ′ (see
Fig. 4). The integral along the total contour Γ′ + Γ is equal to zero. Thus,

Kµ[v](0, 0) = − lim
R→∞

2π∫

0

[Uµ(R, φ)∂nv(R, φ)− v(R,φ)∂nUµ(R, φ)]Rdφ. (20)

Estimate the integral in the right by applying the stationary phase method. A
standard consideration shows that the main term of the integral is obtained by
integration over a small vicinity of the point φ = ψ:

Kµ[v](0, 0) = 2

√
2k0R

π
exp

{
−i

π

2
(µ + 1)− i

π

4

}
cos[µ(π − ψ)]×
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ψ+ε∫

ψ−ε

exp{ik0R(1− cos(φ− ψ))}dφ + o(R0). (21)

An estimation of the main term of the integral gives the formula (19). Note that
taking the limit R →∞ eliminates all other terms, i.e. although the asymptotic
argument is used, formula (19) is exact.

We derive a generalization of (18) for complex angles of incidence ψ; the
formula can be analytically continued from the real segment 0 < ψ < 2π to the
area where the integral (4) converges, i.e. where Im(cos ψ) < 0. This area is
shown in Fig. 5.

Re y

Im y

0 2pp

Figure 5: Area, in which formula (18) is valid

If Im(cos ψ) < 0 , but either Re(ψ) < 0 or Re(ψ) > 2π, one should use
periodicity and bring the angle into the strip 0 < Re(ψ) < 2π, i.e. a general
form of (19) looks like

Gµ(ψ) = 4e−i(µ+1)π/2 cos(µ(π − ψ + 2π[Re(ψ)/(2π)])), (22)

and the square brackets in the last expression denote the integer part.

Proposition 5 Let the field u obey the Helmholtz equation and the Dirichlet
boundary condition u = 0 at the face ϕ = 0. Then

Kµ[u] = 0 (23)

on the face ϕ = 0.

Proof Unlike the situation with a pure differential operator, now this statement
is not obvious due to the presence of an integral over a small arc encircling the
singularity. First, it is necessary to define the value Kµ[u] on the wedge face.
For this, one should be able to take the integral over a small part of the contour,
which lies outside the boundary. Thus a smooth continuation of the field to some
strip outside the boundary is required. In our case, the smooth continuation
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can be easily obtained by the reflection method, i.e. the field is obtained by
antisymmetrical reflection across the boundary.

Finally, the field is antisymmetric with respect to the boundary, and function
Uµ is symmetrical. Therefore, the integral (4) is equal to zero.

Note that the same property can also be proved for Neumann and impedance
boundary conditions. For this, one applies to the field the corresponding oper-
ator (i.e. ∂y or ∂y + const) and takes into account that this operator commutes
with Kµ.

Proposition 6 Let the field obey the Helmholtz equation, radiation condition
and boundary conditions

u(r, 0) = −e−ik0r cos ψ, u(r,Φ) = 0, (24)

with
µ = πm/Φ, m = 0, 1, 2, . . . (25)

Then on both faces of the wedge

(Kµ −Gµ(ψ)) [u] = 0. (26)

Proof In the vicinity of the face ϕ = 0 one can decompose the field into a sum
of a plane wave and a field obeying the condition u = 0 at the boundary. For
both terms the condition (26) is fulfilled. To prove (26) on the face ϕ = Φ we
apply Proposition 3.

Proposition 7 Let u satisfy the radiation condition. Then Kµ[u] also satisfies
the radiation condition. If the directivity of u is given by (3) then the directivity
of Kµ[u] is given by

D(ϕ)
Kµ−→ D′(ϕ) = 4e−i(µ+1)π/2 cos(µϕ)D(ϕ) (27)

Proof Consider the field K[u](R, ϕ) for some fixed ϕ and R →∞. Transform
the integration contour as shown in Fig. 6, i.e. make the straight parts of the
contour have angle ϕ with the x-axis.

Fix the point (R,ϕ), at which the function Kµ[u] is calculated. Let (x, y)
be the coordinates along which the integration is held (i.e. the point (x, y) runs
along the contour Γ). Represent the field u(x, y) near contour Γ as a sum

u = u0 + u1,

where u0 is a plane wave having an appropriate amplitude:

u0(x, y) = D(ϕ)
e−iπ/4

√
2πk0R

exp{ik0(x cosϕ + y sin ϕ)}, (28)

and u1 is the remainder.
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Figure 6: Transformation of the contour of integration for establishing the ra-
diation condition

The value Kµ[u0](R, ϕ) has been calculated in Proposition 4, and it is given
by

Kµ[u0](R,ϕ) = D(ϕ)
eik0R−iπ/4

√
2πk0R

4e−i(µ+1)π/2 cos(µϕ). (29)

Consider Kµ[u1](R, ϕ). Using the standard far-field asymptotic expansion for
u it is not difficult to show that

Kµ[u1](R,ϕ) = O(R−3/2), (30)

i.e. the contribution of u1 is asymptotically small comparatively to (29).
The same estimations can be done for the function Kµ[u′], where

u′ = (cos ϕ∂x + sin ϕ ∂y)u.

Comparison of the asymptotic decompositions for Kµ[u] and Kµ[u′] gives the
radiation condition. The relation (29) gives (27).

Proposition 8 Let

v(r, ϕ) = Jν(k0r)e±iνϕ, ν > 0. (31)

If 0 < µ < ν,
Kµ[v](r, ϕ) = O(1) as r → 0. (32)

If ν < µ then the field near the origin behaves as follows:

Kµ[v](r, ϕ) = −2 sin(πν)H(1)
µ−ν(k0r)e±i(ν−µ)ϕ + O(1) as r → 0. (33)

If ν = µ then near the origin the field behaves as follows:

Kµ[v](r, ϕ) = − sin(πν)H(1)
0 (k0r) + O(1) as r → 0. (34)

Proof Consider only the case of sign “+” in the exponent in (31). The other
sign can be taken into account by mirror reflection y → −y. Moreover, consider
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only the values−π/2 < ϕ < π/2. Other values can be considered by deformation
of the integration contour Γ.

Using the integral formula for Bessel functions represent the function v as a
linear combination of plane waves:

v(r, ϕ) = Jν(k0r)eiνϕ =
1
2π

∫

γ

eik0r cos(θ−ϕ)eiν(θ−π/2)dθ (35)

where contour γ is shown in Fig. 7.

Figure 7: Integration contours for Proposition 7

Apply operator Kµ to (35):

Kµ[v](r, ϕ) =
1
2π

∫

γ

Kµ[eik0r cos(θ−ϕ)]eiν(θ−π/2)dθ (36)

To calculate the r.-h.s. use formula (18):

Kµ[v](r, ϕ) =
1
2π

∫

γ

G(θ + π)eik0r cos(θ−ϕ)eiν(θ−π/2)dθ (37)

Note that due to (22) function G(θ + π) is not continuous on the contour γ.
Thus, the integral can be decomposed as follows:

Kµ[v] = I1 + I2, (38)

where
I1 =

1
2π

∫

γ

cos(µθ)eik0r cos(θ−ϕ)eiν(θ−π/2)dθ =

2e−iπ/2[Jν+µ(k0r)ei(ν+µ)ϕ + e−iπµJν−µ(k0r)ei(ν−µ)ϕ], (39)

I2 =
1
2π

∫

γ∗
(cos(µθ − 2πµ)− cos(µθ))eik0r cos(θ−ϕ)eiν(θ−π/2)dθ (40)
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Here the contour γ∗ goes from π to 3π/2 + i∞. Local asymptotics of I1 can
be found in textbooks, while I2 should be estimated. To make the estimations,
introduce the contour γ∗∗ (see Fig. 7). Note that for any real η

1
π

∫

γ∗+γ∗∗
cos(µθ)eik0r cos(θ−ϕ)eiη(θ−π/2)dθ = H(2)

η (k0r)eiηϕ (41)

The integral over γ∗ converges for r = 0 if η > 0, the integral over γ∗∗ converges
for r = 0 if η < 0. Therefore it is possible to estimate I2 up to a term, which is
limited as r → 0. Detailed but elementary estimations provide (34).

Proposition 9 Let
v(r, ϕ) = ϕJ0(k0r)

then as r → 0

Kµ[v](r, ϕ) = 2π sin(µϕ)H(1)
µ (k0r) + O(1). (42)

Proof The following representation should be used:

v(r, ϕ) =
1
2π

∫

γ

eik0r cos(θ−ϕ)θdθ − π

2
H

(2)
0 (k0r). (43)

Then operator Kµ is applied, and the integrals are estimated as it is done above.
Propositions 8 and 9 give some information about local asymptotics of Kµ[v]

provided that the local expansion of v is known. It is easy to show that if v is
expanded as a series of terms (31) with different ν in some vicinity of the origin
then local behaviour of Kµ[v] is determined by a corresponding series of terms
(33) or (34). The proof is based on the fact that if function w is equal to zero
for r < ε for some ε > 0 and is bounded for r ≥ ε then Kµ[w] is smooth and
bounded near the origin.

Note that in the relations (33), (34), (42) we defined the asymptotics up
to a term, which is bounded as r → 0. Contrary to the usual consideration,
the terms, which are O(1) do not necessarily obey Meixner’s condition. For
example, a more detailed form of (34) is as follows:

Kµ[v] = − sin(πν)H(1)
0 (k0r)± 2 sin(πν)

π
ϕ + Meixner’s terms. (44)

The term proportional to ϕ obeys Helmholtz equation, and it is bounded, but
it does not obey Meixner’s condition, since |∇u|2 is not integrable.

5 An embedding formula for an irrational angle

The operator Kµ + const does not display all the desired properties of an em-
bedding operator when applied to the total field or to the scattered field. This
situation differs from that of [7]. That is why here we have to split the initial
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diffraction problem into two auxiliary ones. Namely, we let the total field be
represented as follows:

u = uin + uI + uII, (45)

where uI is the field obeying the following inhomogeneous Dirichlet boundary
conditions at the faces of the wedge:

uI(r, 0) = −e−ik0r cos ψ, uI(r,Φ) = 0, (46)

i.e. the excitation is set only on the first face of the wedge. Respectively, uII

obeys complementary boundary conditions:

uII(r, 0) = 0, uII(r,Φ) = −e−ik0r cos(Φ−ψ), (47)

Both uI and uII must also obey the edge and radiation conditions. We set Φ to
be equal to π/µ and µ to be an irrational number.

Consider the component uI of (45); we shall need the asymptotic expansion
of this function near the edge. This expansion can be constructed as follows:
first, expand the function −e−ik0r cos ψ into a Bessel series:

−e−ik0r cos ψ =
∞∑

n=0

anJn(k0r)

where the coefficients an can be explicitly calculated. We then use the following
ansatz for the function uI:

uI(r, ϕ) =
ϕ− Φ

Φ
J0(k0r) +

∞∑
n=1

an

sin(Φn)
Jn(k0r) sin(n(Φ− ϕ)) + w(r, ϕ), (48)

where w(r, ϕ) obeys the Helmholtz equation, homogeneous Dirichlet boundary
conditions on the faces and Meixner’s condition at the edge, i.e.

w(r, ϕ) =
∞∑

n=1

bnJµn(k0r) sin(µnϕ), (49)

where bn are unknown coefficients. To construct the ansatz (48) we use the fact
that ϕJ0(k0r) is itself a solution of the Helmholtz equation.

Now we consider the function

W ≡ (Kµ −Gµ(ψ)) [uI]

and according to the properties of the operator Kµ, this function W obeys the
Helmholtz equation, radiation condition, and homogeneous Dirichlet boundary
conditions on the faces of the wedge. Consider the singular terms of W . Due
to Propositions 8 and 9

W =
2π

Φ
sin(µϕ)H(1)

µ (k0r) + O(1) (50)
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as r → 0. The remainder, i.e. the second term, in (50) obeys the Helmholtz
equation, Dirichlet boundary conditions at the faces, and radiation conditions.
By constructing the general Meixner’s series for it, and taking into account the
boundedness, we conclude that this remainder obeys the Meixner’s condition.
Therefore, by the uniqueness theorem, this component of the solution should be
identically equal to zero. Thus, the following relation is valid:

(
Kµ − 4e−i(µ+1)π/2 cos(µ(π − ψ))

)
[uI] =

2π

Φ
sin(µϕ)H(1)

µ (k0r). (51)

We denote the directivity of uI to be DI. Finding the directivities of the right-
and left-hand sides of (51), we obtain that

DI(ϕ,ψ) =
iµ sin(µϕ)

cos(µϕ)− cos(µ(π − ψ))
. (52)

Similarly, if we consider the component uII, where now the operator produc-
ing the embedding formula has the form Kµ − Dµ(2π − ψ), the result for the
directivity is

DII(ϕ,ψ) = − iµ sin(µϕ)
cos(µϕ)− cos(µ(π + ψ))

. (53)

The sum of (52) and (53) then gives the directivity of the scattered field.
A direct check can be performed showing that this directivity is exactly the
classical solution for a wedge problem.

6 Conclusions

A connection between the classical wedge solution and the embedding procedure
is revealed using a pseudo-differential embedding operator. The properties of
the operator are studied. Clearly it is encouraging that this operator both re-
duces to the known form for rational wedge angles, [7], and generates the known
wedge solution. However, the new operator has a disadvantage, namely, for a
complicated scatterer (any scatterer different from a simple wedge) it does not
preserve boundary conditions on more than one face. Thus, the powerful tech-
nique developed for differential embedding operators in [7] cannot be directly
generalized. However, if the field is studied on a branched surface without
reflecting boundaries, then the application of the pseudo-differential operator
gives interesting results. However, that will be the subject of another paper.

The work is supported by the EPSRC EP/D045576/1, RFBR-07-02-00803
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