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Abstract

We study the diffraction series (Schwarzschild’s series) to solve the problem of diffrac-
tion on a slit with ideal boundary conditions. Uing this series we derive the representation
obtained earlier by M.Williams and the differential equations for the unknown functions.

Introduction

The problem of diffraction on a strip or a slit is studied since the end of the 19th century.
After Sommerfeld had obtained an explicit solution of a half-plane diffraction problem a great
number of researchers tried to find such simple and compact solution for the strip (Sommerfeld
himself was among these researchers). Unfortunately, for a long time an only exact solution
was the one in the form of the Fourier series in ellyptic coordinates [1]. This solution is not
satisfactory for many needs and it can be compared with the representation of the Sommerfeld
problem solution in the form of the Fourier decomposition in parabolic coordinates — almost
nobody uses it. Some attempts to obtain a convenient exact solution has been made and most
of them were unsuccessfull. The review of these works was made by Luneburg [2].

A bright work on diffraction on a strip or a slit was published by M. Williams in 1982 [3].
He used the method proposed earlier by Latta [4] for studying the integral equation of a certain
type and reduced the integral equation to a pair of ordinary differential equations.

Another method, which also leads to an ordinary differential equation was peroposed by the
author last year [5]. This method utilizes an extention of Wiener-Hopf method for the problem
with entire functions. The solutions in both [3] and [5] are expressed in terms of specific
boundary-value problems for ordinary differential equations, whose the coefficients depend on
several unknown parameters. Unfortunately, in [3] and [5] the solutions are represented in
very different forms and it is difficult to compare them or convert one into another. Even the
asymptotic estimation of the unknown parameters is not a simple task.

Here we are going to present another technique applicable to the slit and hopefully to
some more general problems. The process of diffraction on a slit is treated as a series of
successive diffractions on the edges of the slit. Each diffraction can be easily described using
the Sommerfeld’s half-line solution. Probably, Schwarzschild was the first who proposed this
idea and studied the series in [6], so we call the solution Schwarzschild’s series. The series was
used for obtaining approximate results by many authors (in fact, the GTD and PTD theories
are based on this idea). An interesting interpretation of the diffraction series can be found in
the book [7].
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In the current paper we develop a special technique for transformation of the diffraction
series enabling one to obtain exact nontrivial results. The main results are the derivation of
teh Williams representation describing the behaviour of the diffraction diagram as a function
of the angle of incidence, and obtaing the differential equations for unknown functions.

Using the proposed technique we obtain both the results of [3] and [5], thereby providing
an independent verification of them. Besides, we find all undetermined values of both works in
the form of the asymptotic series, each term of which can be directly calculated in quadratures
(originally, both papers referred to some specific boundary-value problems).

1 Problem formulation and the solution in the form of

diffraction series

1.1 Problem formulation

Consider 2-dimensional problem of diffraction of a plane wave on an ideal screen with a slit.
Namely, let the Helmholtz equation

∆u + k2
0u = 0 (1.1)

be valid on the (x, y) plane. The boundary conditions are

u(x, 0) = 0 for |x| > a. (1.2)

the slit occupies the segment −a < x < a (see Figure 1).

Figure 1: Geometry of the problem

We choose the time dependence of all values as e−iωt, where ω = k0c, and c is the sound
velocity.

Let the incident plane wave fall from the upper half-plane y > 0 and has the form:

uin = e−ik∗x−i
√

k2
0−k2∗y, (1.3)

where k∗ = −k0 cos ψ, ψ is the angle of incidence (shown in Figure 1). Let the total field in the
upper half-plane be the sum of the incident field uin, the reflected field

ur = −e−ik∗x+i
√

k2
0−k2∗y (1.4)
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and the scattered field usc. The field in the lower half-plane is equal to usc.
It is clear that the field usc is symmetrical, i.e. usc(x, y) = usc(x,−y) and its y-derivative

must have the discontinuity at y = 0, |x| < a equal to 2i
√

k2
0 − k2∗e

−ik∗x.

1.2 Diffraction series

We find it convenient to consider the combination usc + ur in the upper half-plane. For this
combination we have the following boundary conditions at y = +0:

usc(x, +0) + ur(x, +0) = −e−ik∗x for |x| > a, (1.5)

∂[usc(x, +0) + ur(x, +0)]

∂y
= 0 for |x| > a. (1.6)

Besides, the Meixner’s conditions must be valid at the edges of the slit and the radiation
conditions must be satisfied at infinity.

Consider the process of diffraction as a process successive diffractions on the parts of the
screen, i.e. represent the field in the form of a series

usc + ur = u1 + u2 + u12 + u21 + u121 + u212 + . . . (1.7)

where u1 and u2 are the zero-order diffraction terms (the results of the diffraction of the incident
plane wave on the separate edges of the slit); index 1 corresponds to the diffraction on the edge
x = a, index 2 corresponds to the diffraction on the edge x = −a.

The terms u12 and u21 correspond to diffraction field of order 1, i.e. the result of the diffrac-
tion of the terms u1 on the edge 2 and the term u2 on the edge 1. The sequence of successive
diffraction on the edges can be continued, thus giving the terms u1212...21. Let all the sequence
of symbols 1212 . . . 21 be the ”index” of the term. This sequence has the following properties:
the symbols are aletring; the left symbol corresponds to the first act of diffraction.

We should note that such indexing is renundant. Instead of writing down the whole sequence
of the acts of diffraction, one could fix the first or the last act and the number of the acts. We
shall introduce compact notations a bit later. Now we should say that the notation system
introduced here can be very useful in description of diffraction on more complicated structures,
such as the sets of strips, joints e.t.c.

Introduce the following shorter notations:
un

1...: the sequence in the index starts with 1 and has the length n + 1;
un

...1: the last symbol of the sequence is 1 and the length is n + 1;
un

1...1: the first and the last symbols are 1’s (it is obvious that n is even in this case);
We have the following boundary conditions at y = 0 tor the zero-order terms:

∂u1

∂y
= 0 for x < a, u1 = −e−ik∗x for x > a, (1.8)

∂u2

∂y
= 0 for x > −a, u2 = −e−ik∗x for x < −a. (1.9)

Other terms obey the following boundary conditions:

∂un
...1

∂y
= 0 for x < a, un

...1 = −un−1
...2 for x > a, (1.10)
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∂un
...2

∂y
= 0 for x > −a, un

...2 = −un−1
...1 for x < −a. (1.11)

Beside the boundary conditions, these terms indeed satisfy the Helmholtz equation, edge
conditions and radiation conditions at infinity.

1.3 The solution of the sequence of diffraction problems using Wiener-
Hopf method

Introduce the following noation for the diffraction terms:

Ūn
...1(k) =

i√
k2

0 − k2

∞∫

a

∂un
...1(x, +0)

∂y
eikxdx (1.12)

Ūn
...2(k) =

i√
k2

0 − k2

−a∫

−∞

∂un
...2(x, +0)

∂y
eikxdx (1.13)

The integrals are defined correctly for all n except n = 0. The zero-order terms contain the
non-decaying contribution of ur. That is why the formulae (1.12), (1.13) must be modified as
follows:

Ū1(k) =
i√

k2
0 − k2

∞∫

a

[
∂u1(x, +0)

∂y
+ i

√
k2

0 − k2∗e
−ik∗x

]
eikxdx +

i
√

k2
0 − k2∗√

k2
0 − k2

eik∗a

k − k∗
, (1.14)

Ū2(k) =
i√

k2
0 − k2

−a∫

−∞

[
∂u2(x, +0)

∂y
+ i

√
k2

0 − k2∗e
−ik∗x

]
eikxdx− i

√
k2

0 − k2∗√
k2

0 − k2

e−ik∗a

k − k∗
, (1.15)

Taking into account the boundary conditions (1.8)–(1.11), we obtain the inverse Fourier
transformation in the form:

un
... = − 1

2π

∫

γ∓
Ūn

...e
−ikx+i

√
k2
0−k2ydk, (1.16)

where the contours γ± are shown in Figure 2. Contour γ− must be chosen for the terms
un

...1; contour γ+ must be chosen for un
...2. This choice quarantees the validity of the radiation

conditions and the correct account of the pole, corresponding to the incident wave.
Note that for the Fourier transformation we use the contours shown in Figure 2a, and for

the asymptotic estimation the deformed contours shown in Figure 2b can be used.
Unknown functions Ūn

... can be found using the Wiener-Hopf method [8]. Skipping the detail,
we write down here the final form of the solutions.

The zero-order terms are defined by

Ū1(k) = A1
eika

√
k0 − k(k − k∗)

, Ū2(k) = A2
e−ika

√
k0 + k(k − k∗)

, (1.17)
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Figure 2: The contours of integration

the coefficients A1,2 are equal to

A1 = ie−ik∗a
√

k0 − k∗, A2 = −ieik∗a
√

k0 + k∗. (1.18)

The terms of higher orders are defined recursively as follows:

Ūn
...1 = − eika

√
k0 − k

F+[e−ika
√

k0 − k Ūn−1
...2 ], (1.19)

Ūn
...2 = − e−ika

√
k0 − k

F−[eika
√

k0 + k Ūn−1
...1 ]. (1.20)

F+ and F− are the operators for the additive decomposition into the componets, regular in
the upper and lower half-planes of the complex variable k. They are defined as

F±[V (k)] = ± 1

2πi

∫

γ±

V (τ)dτ

τ − k
, (1.21)

One should note that the spectral functions Ūn
... depend not only on the variable k, but on

k∗ as well. The last is the parameter related to the angle of incidence. Below we indicate this
dependence explicitly. The sum of all terms Ūn

...(k, k∗) is proportional to the far-field directivity
of the scattered field f(ϕ, ψ), where k0 cos ψ = −k∗, k0 cos ϕ = −k.

f(k, k∗) ∼
√

k2
0 − k2Ū(k2

0 − k2) =
√

k2
0 − k2

∞∑
n=0

(
Ūn

...1(k, k∗) + Ūn
...2(k, k∗)

)
. (1.22)
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2 Preliminary results

2.1 The auxiliary functions G

Avoiding recursion, one can write

Ūn
...1(k, k∗) =





A1e
ika

√
k0 − k

F+[β+(k)F−[β−(k) . . . F−[β−(k)
1

k − k∗
] . . .]] for even n,

A2e
ika

√
k0 − k

F+[β+(k)F−[β−(k) . . . F+[β+(k)
1

k − k∗
] . . .]] for odd n,

(2.1)

Ūn
...2(k, k∗) =





A2e
−ika

√
k0 + k

F−[β−(k)F+[β+(k) . . . F+[β+(k)
1

k − k∗
] . . .]] for even n,

A1e
−ika

√
k0 + k

F−[β−(k)F+[β+(k) . . . F−[β−(k)
1

k − k∗
] . . .]] for odd n.

(2.2)

Each expression contains n pairs of the brackets.
Functions β±(k) are defined as

β+(k) = e−2ika

√
k0 − k√
k0 + k

, β−(k) = e2ika

√
k0 + k√
k0 − k

. (2.3)

They emerge when the coefficients of the half-line problems are factorized.
Below the expressions for the diffraction terms shall be obtained, in which the dependence

on k and k∗ is separated. For this we introduce the auxiliary functions Gn
...1(k) and Gn

...2(k),
whose properties are close to that of the functions Ūn

...1(k, k∗) and Ūn
...2(k, k∗), considered as the

functions of k. Auxiliary functions do not depend on k∗. Later we shall obtain the representation
of the functions Ūn

... in the form of the linear combinations of functions Gn
... with rational

coefficients.
Introduce the auxiliary functions as

G1(k) = G2(k) ≡ 1 (2.4)

Gn
...1(k) = F+[β+(k)Gn

...2(k)], (2.5)

Gn+1
...2 (k) = F−[β−(k)Gn

...1(k)]. (2.6)

The structure of the indexes if the functions G is the same as that of Ū , i.e., the indexes are
the sequences of the symbols 1 and 2, corresponding to the sequence of the operators F±.

To compare the structure of the functions Ū (as the functions of the variable k) and G, we
consider as the example Ū12121 and G12121:

Ū12121(k, k∗) = A1
eika

√
k0 − k

F+[β+F−[β−F+[β+F−[β−
1

k − k∗
]]]], (2.7)

G12121(k) = F+[β+F−[β−F+[β+F−[β−]]]]. (2.8)

It is clear that someone has to get rid of the fraction 1/(k − k∗) in the operands in order to
express Ū12121 in terms of G. Below we propose a procedure to perform this. The procedure
utilizes some specific properties of the operators F±.
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In the end of this section we should note that within this paper we do not consider the ques-
tions of the convergence and asymptotic estimation of the diffraction terms. Such estimations
can be performed easily by using cnown methods and deforming the contours of integration.
The author has made these calculations and happy to inform the readers that one can choose
an imaginary value of k0, such that all the series are convergent and all formulae are valid. If
one uses a usual procedure of analytic continuation in k0, then the validity of all relations for
arbitrary k0 will be established.

2.2 Elementary properties of the operators F±
In this section we shall study some properties of the operators F±. This properties will be used
for manipulations with the diffraction series, namely for excluding the dependence on k∗ and
for differentiation.

Properties 1 and 2 are obvious and they are listed here only to avoid misunderstanding
below. The first one expresses the linearity of the operators; the second one expresses the
invariance with respect to translations along the real axis.

The third property is less evident; all tricks below are based on this property.
1. It is clear that F± are linear operators, i.e. for arbitrary constant c and arbitrary functions
V (k), V1(k), V2(k)

F±[cV (k)] = cF±[V (k)], F±[V1(k) + V2(k)] = F±[V1(k)] + F±[V2(k)].

Here we do not discuss to what class of fucntions the operators F± can be applied correctly.
However, we have no doubt that in our case all functions are “good” in this sence. The exponent
factors provide the necessary decay.
2. For arbitrary function V (belonging to a wide class)

(F±[V ])′ = F±[V ′] (2.9)

This property can be proved by means of integration by parts:

(F±[V (k)])′ = ± 1

2πi

∫

γ±

V (τ)dτ

(τ − k)2
= ∓ 1

2πi

∫

γ±
V (τ)d

(
1

τ − k

)
= ± 1

2πi

∫

γ±

V ′(τ)dτ

τ − k
.

3. For arbitrary k1 not lying on the contours γ±, and an arbitrary function V = V (k)

F±

[
V

k − k1

]
=

F±[V ]

k − k1

+
F±(V, k1)

k − k1

, (2.10)

where

F±(V, k1) = ∓ 1

2πi

∫

γ±

V (τ)dτ

τ − k1

. (2.11)

The last property follows from the elementary relation:

1

(τ − k1)(τ − k)
=

1

k − k1

(
1

τ − k
− 1

τ − k1

)
.
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Note that the value of F±(V, k1) does not depend on k, i.e. it is a constant in k.
Equation (2.11) can be interpreted as follows. The operator F+ performs the decomposition

of the function V into two terms: V = V+ + V−, where the first term is regular above the
contour γ+, and the second is regular below this contour. Try to decompose the same way the
function V/(k − k1). The decomposition

V

k − k1

=
V+

k − k1

+
V−

k − k1

has almost all required properties, but one of the terms possesses an undisired pole at k = k1.
This pole belongs to either the first or the second term, depending on the half-plane (upper
or lower with respect to γ+), to which k1 belongs. However, the undesired pole can be easily
subtracted. Due to this, the following formulae are valid:

F+(V, k1) =

{ −V+(k1), k1 lies above the contour γ+

V (k1)− V+(k1), k1 lies below the contour γ+
(2.12)

F−(V, k1) =

{ −V−(k1), k1 lies below the contour γ−
V (k1)− V−(k1), k1 lies above the contour γ−

(2.13)

Note that the values F(. . .) are finite, therefore if k1 coincides with a singularitie of either
V+ or V−, then a corresponding limit must be taken in the relations above.

3 Transformations of the diffraction series

3.1 Representation of the diffraction terms as combinations of G

Transform the expression (2.7) as follows. Apply the property (2.10) first to the internal
operator, then to the next one, e.t.c. In each case choose k1 equal to k∗. To explain this
transformation consider the example. Using (2.10) transform the term Ū21:

Ū21 = − eika

√
k0 − k

F+[e−ika
√

k0 − kŪ2(k)] = −A2
eika

√
k0 − k

F+

[
β+(k)

k − k∗

]
=

−A2
eika

√
k0 − k

{
G21(k)

k − k∗
+
F+(β+, k∗)

k − k∗

}
(3.1)

Note that F+(β+, k∗) is a constant with respect to the variable k. The value of this constant
can be determined using the relation (2.12):

F+(β+, k∗) = −G21(k∗). (3.2)

Using (3.1), one can transform the next term, namely Ū212:

Ū212 = A2
e−ika

√
k0 + k

F−

[
β−(k)

G21(k)−G21(k∗)
k − k∗

]
=

A2
e−ika

√
k0 + k(k − k∗)

{G212(k)−G21(k∗)G12(k)−G212(k∗) + G21(k∗)G12(k∗)} . (3.3)

One can see that this process can be continued, thus yielding the representations of the
terms Ū2121, Ū21212 . . . Let us formulate the general result in the form of the following theorem:
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Theorem 1 The diffraction terms Ū... can be represented as follows:

Ūn
ν...1(k, k∗) = (−1)nAν

eika

√
k0 − k(k − k∗)

n∑
m=0

gn−m
ν... (k∗) Gm

...1(k),

(3.4)

Ūn
ν...2(k, k∗) = (−1)nAν

e−ika

√
k0 + k(k − k∗)

n∑
m=0

gn−m
ν... (k∗) Gm

...2(k),

where the first index ν = 1, 2 in the sequence either coincides with the last one µ (in the case
of even n), or it does not coincide with µ (if n is odd). The values gn

... do not depend on k.

The indexes of the symbols gn
... are similar to the indexes of Ū and G, i.e. the lower indexes

are the sequences of altering symbols 1 and 2, and the upper index is the length of the sequence
minus 1. In the case of symbols g this sequence cannot be directly interpreted as the successive
diffraction acts.

The indexes if formula (3.4) are chosen according the following example. Let in the left-hand
side there is the value Ū12121. Then in the right-hand side there stand the products g1G12121,
g12G2121, g121G121, g1212G21 and g12121G1. One can see that the initial sequence 12121 is split
into two parts all possible ways. One part stands with g, another one stands with G. The last
symbol of the first sequence must coincide with the first symbol of the second sequence. The
sum of the lengths of the parts must be greater by 1 than the length of the initial sequence.
Note that the sum has the structure of convolution with respect to the indexes.

The recursive formulae for the coefficients are

g1(k∗) = g2(k∗) ≡ 1, (3.5)

gn+1
ν...µ(k∗) = −

n∑
m=0

gn−m
ν... (k∗)Gm+1

...µ (k∗). (3.6)

We imply that the indexes µ, ν = 1, 2 coincide when n is odd and do not coincide in the opposite
case.

Theorem 1 and the formulae (3.5, 3.6) can be proved by induction. The basic statement
(n = 0) can be obtained by comparing (3.4) with (1.17).

Suppose that the statement (3.4) is fulfilled for some n. Using this fact, let us calculate
Ūn+1

ν...1 :

Ūn+1
ν...1 (k, k∗) =

Aν(−1)n+1eika

√
k − k0

F+

[
e−2ika

√
k0 − k√

k0 + k(k − k∗)

n∑
m=0

gn−m
ν... (k∗)Gm

...2(k)

]
=

Aν(−1)n+1eika

√
k − k0

n∑
m=0

gn−m
ν... (k∗)F+

[
β+(k)Gm

...2(k)

k − k∗

]
. (3.7)

Each term in the sum can be transformed using (2.10), thus giving

Ūn+1
...1 (k, k∗) =

Aν(−1)n+1eika

√
k − k0

n∑
m=0

gn−m
ν... (k∗)

Gm+1
...1 (k)−Gm+1

...1 (k∗)
k − k∗

. (3.8)
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Similar expresiions can be obtained for Ūn+1
...2 . Relations obtained verify the formulae (3.4)

and (3.5)–(3.6).
Let us discuss the result of Theorem 1. Each term of the diffraction series depends on k and

k∗. The relation (3.4) represents the diffraction terms as combinations of functions depending
on one variable: function Gn

... depend only on k, and functions gn
... depend only on k∗.

Some interesting properties of the coefficients gn
...(k∗) will be studied in the Appendix.

3.2 The expression for the sum of the diffraction series

We obtained above the representation for each diffraction term. Here we use this representation
for simplifying the whole diffraction series. While doing this, we use implicitly the fact that
the sum (3.4) has the form of a discrete convolution with respect to the index.

Represent the diffraction series in the form

Ū(k, k∗) =
∑

even n

Ūn
1...1(k, k∗) +

∑

odd n

Ūn
2...1(k, k∗) +

∑
even n

Ūn
2...2(k, k∗) +

∑

odd n

Ūn
1...2(k, k∗). (3.9)

All sums are taken over nonnegative integer n. Applying the result of Theorem 1 and grouping
the terms for different G, we obtain the representation:

Ū(k, k∗) =
1

k − k∗

[
(A1g1−1(k∗)− A2g2−1(k∗))

(
G1−1(k)eika

√
k0 − k

− G1−2(k)e−ika

√
k0 + k

)
+

(A1g1−2(k∗)− A2g2−2(k∗))
(

G2−1(k)eika

√
k0 − k

− G2−2(k)e−ika

√
k0 + k

)]
, (3.10)

where the value with the index µ − ν denotes the sum of all corresponding values with the
indexes starting with µ and finishing with ν, i.e.

G1−1 = G1 + G121 + G12121 + . . . G2−2 = G2 + G212 + G21212 + . . . (3.11)

G1−2 = G12 + G1212 + G121212 + . . . G2−1 = G21 + G2121 + G212121 + . . . (3.12)

g1−1 = g1 + g121 + g12121 + . . . g2−2 = g2 + g212 + g21212 + . . . (3.13)

g1−2 = g12 + g1212 + g121212 + . . . g2−1 = g21 + g2121 + g212121 + . . . (3.14)

The properties of such sums are described in the Appendix. Here we list some of these
properties necessary for the further transformations of the diffraction series.

It follows from (A.23)–(A.26) that

g1−1(k∗) = G2−2(k∗)/N(k∗), (3.15)

g2−1(k∗) = −G2−1(k∗)/N(k∗), (3.16)

g2−2(k∗) = G1−1(k∗)/N(k∗), (3.17)

g1−2(k∗) = −G1−2(k∗)/N(k∗), (3.18)

where N(k∗) is the determinant

N(k∗) =

∣∣∣∣
G1−1(k∗) G2−1(k∗)
G1−2(k∗) G2−2(k∗)

∣∣∣∣ . (3.19)
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It is shown in the Appendix that
N(k∗) ≡ 1. (3.20)

Note that the far-field directivity is proportional to
√

k2
0 − k2Ū . Using the definition of the

coefficients A1,2 and the properties (3.15–3.20), we transform (3.10) to the form

f(k, k∗) ∼
√

k2
0 − k2Ū(k) = i

√
k2

0 − k2
√

k2
0 − k2∗

k − k∗
×

[(
G1−1(k∗)eik∗a
√

k0 − k∗
− G1−2(k∗)e−ik∗a

√
k0 + k∗

)(
G2−1(k)eika

√
k0 − k

− G2−2(k)e−ika

√
k0 + k

)
−

(
G2−1(k∗)eik∗a
√

k0 − k∗
− G2−2(k∗)e−ik∗a

√
k0 + k∗

)(
G1−1(k)eika

√
k0 − k

− G1−2(k)e−ika

√
k0 + k

)]
. (3.21)

I.e., the far-field directivity becomes expressed in the form

f(k, k∗) =
V (k)W (k∗)−W (k)V (k∗)

k − k∗
, (3.22)

where V and W are some functions depending on one variable. Similar representation for the
far-field directivity was obtained (probably, for the first time) by Williams [3].

Note that such a representation cannot be unique. Any transformation of the form

V ∗(k) = c1V (k) + c2W (k), (3.23)

W ∗(k) = c2V (k) + c1W (k) (3.24)

for arbitrary constant c1 6= c2 leads to another representation of the same form. As we shall
see below, for some values of these constants, the representation (3.21) can be transformed into
Williams’ formula.

4 Differentiation of the diffraction series

The formula (3.21) looks to be useful, but calculation of the function Gµ−ν using their definition
is not a simple task. Only recursive relations involving integral representations (2.4)–(2.6) have
been proposed for this above.

Below we show that the functions Gn
...(k) and the infinite sums of these functions Gµ−ν(k)

obey ordinary differential equations with rational in k coeffieicents. The orders of the equations
for Gn

...(k) are equal to n, and the order of the equations for Gµ−ν(k) is equal to 2.

4.1 Differentiation of the functions Gn
...(k)

Let the prime denote the differentiation with respect to k. Applying the relation (2.9) to the
definition of the functions G, we obtain the relarion

(Gn+1
ν...1)

′ = F+[β′+Gn
ν...2] + F+[β+(Gn

ν...2)
′]. (4.1)

Similar relation can be obtained for (Gn+1
ν...2)

′.
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Note that the logarithmic derivatives of the functions β±(k) are rational functions of k, in
other words, the differentiation of the functions β±(k) is equivalent to multiplication of these
functions by some known rational functions:

(β±(k))′ =
(
∓2ia± 1

2(k − k0)
∓ 1

2(k + k0)

)
β±(k). (4.2)

We described above a method of elimination of a rational function under the operator F±.
In combination with the relation (4.1) this method enables to represent (Gn

...(k))′ in the form of
a linear combination of the functions Gm

...(k) with m ≤ n. The structure of the formulae, which
can be obtained using this method, is more complicated than that of (3.4):

Theorem 2 The derivatives of Gn
...(k) with respect to k are given by

(Gn
ν...µ(k))′ =

(
rν − rµ − pµ

k − k0

− mµ

k + k0

)
Gn

ν...µ(k) +
n∑

m=0

(
pn−m

ν...

k − k0

+
mn−m

ν...

k + k0

)
Gm

...µ(k). (4.3)

The coefficients p, m do not depend on k.

The indexes of p, m are similar to the indexes of g and other diffraction values.
The recursive relations for the coefficients are

r1 = ia, r2 = −ia, (4.4)

p1 = −1/4, p2 = 1/4, (4.5)

m1 = 1/4, m2 = −1/4, (4.6)

pn+1
ν...µ̄ =

n∑
m=0

pn−m
ν... F±(β±Gm

...µ, k0)− pµF±(β±Gn
...µ, k0), (4.7)

mn+1
ν...µ =

n∑
m=0

mn−m
ν... F±(β±Gm

...µ,−k0)−mµF±(β±Gn
...µ,−k0). (4.8)

The signs ± in two last formulae depend on µ: it is ”+” for µ = 2 and ”-” for µ = 1. The
symbol µ̄ denotes 2 for µ = 1 and it is equal to 1 for µ = 2.

This theorem can be easily proved by induction using (4.1) and (4.2).
The coefficients p and m possess some interesting algebraic properties; they are studied in

the Appendix.
Let us discuss some coroolaries of Theorem 2. The equation (4.3) for n = 1 is an inhomo-

geneous linear ordinary differential equation for G12(k) and G21(k) with rational coefficients
and rational right-hand side. These equations are valid on the vhole complex plane (unlike the
represenations (2.5), (2.6), which are valid either above γ+ or below γ−, respectively).

For finding the functions G121 we take the equations (4.3) for G121 and G21. So, we have
a closed system of 2 differential equations. Generally, for each Gn

... we have a system of n
inhomogeneous ordinary differential equations. This system must be supplied by appropriate
boundary conditions. These conditions must include the restrictions on the behaviour of un-
known functions at infinity and at k = ±k0. Here we are not going to perform any practical
calculations, so we do not explore this question.

Note that using Theorem 1, the diifferential equations can be obtained for the values Ūn
....

12



4.2 Differentiation of the infinite sums

We introduced the series Gν−µ(k) by (3.11), (3.12)). These series are auxiliary functions for
calculation of the far-field directivity. Let us calculate the derivatives of these series. Using
Theorem 2 we obtain:

(Gν−µ(k))′ =
(

rν − rµ − pµ

k − k0

− mµ

k + k0

)
Gν−µ(k)+

(
pν−1

k − k0

+
mν−1

k + k0

)
G1−µ(k) +

(
pν−2

k − k0

+
mν−2

k + k0

)
G2−µ(k), (4.9)

where the values pµ−ν and mµ−ν are introduced similarly to gµ−ν :

p1−1 = p1 + p121 + p12121 + . . . p2−2 = p2 + p212 + p21212 + . . . (4.10)

p1−2 = p12 + p1212 + p121212 + . . . p2−1 = p21 + p2121 + p212121 + . . . (4.11)

m1−1 = m1 + m121 + m12121 + . . . m2−2 = m2 + m212 + m21212 + . . . (4.12)

m1−2 = m12 + m1212 + m121212 + . . . m2−1 = m21 + m2121 + m212121 + . . . (4.13)

Depending on the values of ν and µ, the equation (4.9) has four realizations. These 4
equations can be split into two pairs. One of these pairs is composed by the equations for
(G1−1)

′ and (G2−1)
′, another pair is composed by two other equations. Each pair forms a closed

system of two homogeneous differential equations with rational coefficients. The coefficients of
the equations are representaed in the form of asymptotic series (4.10)–(4.13). Each term in
these series can be calculated using the recursive formulae involving integral representations.
In the Appendix we derive more convenient representations for the coefficients.

Boundary conditions for these equations are composed by the restrictions on the behaviour
of the functions Gν−mu at infinity and at the singular points ±k0.

4.3 Connection with the results obtained earlier

The contents of the ciurrent paper is closely connected with the works by Williams [3] and
Shanin [5]. These authors also explore the possibility to find the solution using ordinary differ-
ential equations. Here we propose an interpretation of the results of these two works in terms
of the current paper. Moreover, we obtain the unknown parameters from [3] and [5] in the form
of asymptotic series.

Let us start with [3]. Consider the functions

V (k) = G1−2(k0)

(
G2−2(k)e−ika

√
k0 + k

− G2−1(k)eika

√
k0 − k

)
+

G1−1(k0)

(
G1−1(k)eika

√
k0 − k

− G1−2(k)e−ika

√
k0 + k

)
, (4.14)

W (k) = G1−1(k0)

(
G2−2(k)e−ika

√
k0 + k

− G2−1(k)eika

√
k0 − k

)
+

G2−1(k0)

(
G1−1(k)eika

√
k0 − k

− G1−2(k)e−ika

√
k0 + k

)
. (4.15)
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These functions coincide with Williams’ “fundamental solutions” up to constant coefficients.
Note that V (k) = W (−k), and derive the differential equations for V and W . Using (4.9), we
obtain in Williams’ notations

V ′ − ia cosh
θ

2
V + ia sinh

θ

2
W =

1

2

ΓW − V

k0 + k
. (4.16)

This equation is precisely the equation from [3]. The constants are defined as

cosh
θ

2
=

(G2−1(k0))
2 + (G1−1(k0))

2

(G2−1(k0))2 − (G1−1(k0))2
, (4.17)

Γ = −2(m1−2 + m2−1). (4.18)

Consider now the results of [5]. The main statement of this work is that the functions

Ū+(k) ≡
∞∑

n=0

Ūn
...1(k, k∗) and Ū−(k) ≡

∞∑
n=0

Ūn
...2(k, k∗)

are two different solutions of an ordinary differential equation of order 2 with rational coefficients
with respect to the variable k.

Let this equation have the form

U ′′ = X(k)U ′ + Y (k)U, (4.19)

where prime corresponds to differentiation with respect to k. The coefficients X and Y can be
represented as (see [5]):

X = D′/D, Y = E/D, (4.20)

where D and E are the determinants

D =

∣∣∣∣
(Ū+)′ Ū+

(Ū−)′ Ū−

∣∣∣∣ E =

∣∣∣∣
(Ū+)′ (Ū+)′′

(Ū−)′ (Ū−)′′

∣∣∣∣ . (4.21)

Usin the technique of diffraction series transformation, Ū+ and Ū− can be written in the
form

Ū+(k, k∗) =
eika

√
k0 − k(k − k∗)

[C1G1−1(k) + C2G2−1(k)] , (4.22)

Ū−(k, k∗) = − e−ika

√
k0 + k(k − k∗)

[C2G2−2(k) + C1G1−2(k)] , , (4.23)

where
C1 = A1g1−1 − A2g2−1, C2 = A1g1−2 − A2g2−2. (4.24)

Using Theorem 1 and Theorem 2, we can write down the expressions for the determinants
D and E in general case, but they are rather ugly. Consider the particular case of the normal
incidence k∗ = 0. In this case the calculations are less complicated. The result is

D =
−2ia(k2 − k2

0) + k0(1 + 4p2−2 + 2p1−2 − 2p2−1)

(k2
0 − k2)3/2k2

, (4.25)
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E =
Q

4(k2
0 − k2)7/2k2

, (4.26)

Q = 8ia3(k2 − k2
0)

3 − 4a2k0(k
2 − k2

0)
2(3 + 2p1−2 + 12p2−2 − 2p2−1)−

2ia(k2 − k2
0)(k

2
0(9− 4(p1−2)

2 + 48(p2−2)
2+

p2−2(24− 16p2−1)− 8p2−1 − 4(p2−1)
2 + 8p1−2(2p2−2 + p2−1))+

k2(−3 + 4(p1−2)
2 − 4p2−1 + 4(p2−1)

2 + 4p1−2(−1 + 2p2−1)))+

k0(1 + 2p1−2 + 4p2−2 − 2p2−1)(k
2
0(15− 4(p1−2)

2 + 8p2−2 + 16(p2−2)
2 − 4p2−1−

4(p2−1)
2 + 4p1−2(−1 + 2p2−1)) + k2(−15 + 4(p1−2)

2 + 4p2−1 + 4(p2−1)
2 + 4p1−2(1 + 2p2−1))).

The ansatz for the determinants D and E is the same as in [5]. Comparing (4.9) with the
equations obtained in [5], we note that the solution of the main equation can be represented as
a linear combination of the solutions of simlier equations having similar form. These auxiliary
equations contain less singular points and less monodromy restrictions are imposed on the
solutions. This fact can be interpreted in terms of the work [9], but this topic needs a detailed
investigation.

5 Conclusions

The following results are obtained in this paper:
— The relation (2.10) is derived. It is used for simplification and differentiation of the diffraction
series. This property enables to express the diffraction terms and their derivatives trough the
auxiliary functions G, which depend on a single variable.
— It is shown that the coefficients g, p and m satisfy unobvious algebraic relations. The most
important of them are (A.23)–(A.26), (A.28)–(A.31), (A.32), (A.45).
— The represention (3.21) was obtained. Ordinary differential equations (4.9) for the auxiliary
functions were derived.
— Comparison with the results of [3] [5] was performed. Asymptotic series for the unknown
coefficients of these works was obtained.

Now let us say a few words about the motivation of the current work. Some results were ob-
tained as the development of the ideas from [5]. It was necessary to find convenient expressions
for D and E for numerical calculations. From the other hand, the representation (3.21) does
not follow from [5]. This representation cannot be ignored because this representation simplifies
the calculations dramatically. We also suppose that this representation is a particular case of
a more general theoretical result.

We must confess that the problem of diffraction by a strip or a slit is not very interesting
itself. It is pleasant to obtain new result in such intensively studied problem, but the primary
target is developing the method applicable to a wider class of diffraction problems. We hope
that the technique developed here can be generalized on the problems that can be interpreted
as wave propagation on non-schlicht surfaces in the sence of Sommerfeld. We remind that he
treated diffraction by a half-line as propagation on a 2-sheet “Riemann” surface.

As the examples of such problems we mention here 2D problem of diffraction on a set of
ideal segments, which lie in one line.
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The approach developed in [5] can be applied to such problems, but the practical calculations
are extremely difficult because of a great number of unknown parameters and monodromy
restrictions. We hope to obtain the representations like (3.21) and differential equation of the
form (4.9) for these problems.

Author is grateful to INTAS, Russian Fund for Basic Research and the program “Universities
of Russia” for the finansial support.

Appendix. Some properties of the coefficients g, p, m

The coefficients gn
..., pn

... and mn
... have been introduced using the recursive relations. These

formulae involve the values F±(β±Gm
..., k1), where k1 can be equal to±k0 or to k∗. The properties

of the coefficients follow either from the properties of the properties of the operators F or from
the properties of the structure of the recursive relations. Here we shall study the properties of
the second sort. The values F±(β±Gm

..., k1) within our study can be substituted bya an arbitrary
set of complex numbers.

a) q-type and h-type sequences

Let the symbols fn
... denote an arbitrary set of values, having the indexes peculiar to the diffrac-

tion terms (i.e. f21, f212, fn
...1 e.t.c.). We do not use the symbols with n = 0, namely f1 and

f2.
Consider the recursive relations of two types. the sequence obeying the relations of the form

q1 = q2 = 1, (A.1)

qn+1
ν...µ =

n∑
m=0

qn−m
ν... fm+1

...µ (A.2)

we shall call a q-type sequence (or simply a q-sequence), associated with the set fn
.... For

example, if
fn

ν... = −Gn
ν...(k∗), (A.3)

then
gn

ν...(k∗) = qn
ν... (A.4)

(see (3.5)–(3.6)). Beside this example, below we introduce the q-sequences that are necessary
for calculating of the coefficients p and m. These sequences are associated with some other sets
of values f .

The sequence of the second type (h-sequences) obey the recursive relations

h1 = 1/2, h2 = −1/2, (A.5)

hn+1
ν...µ =

n∑
m=0

hn−m
ν... fm+1

...µ − hµf
n+1
ν...µ. (A.6)
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The coefficients p and m (see Theorem 2) are the sequences of h-type. If the sequence hn
... is

associated with the set fn
ν... = F±(β±Gn−1

ν... , k0), then

pn
ν... = −hn

ν...

2
. (A.7)

If the sequence is associated with fn
ν... = F±(β±Gn−1

ν... ,−k0), then

mn
ν... =

hn
ν...

2
. (A.8)

Consider the following example. Let us calculate the coefficients q12, q121, q1212, q12121, using
the relation using the relations (A.1)–(A.2):

q12 = f12, (A.9)

q121 = f12f21 + f121, (A.10)

q1212 = f12f21f12 + f121f12 + f12f212 + f1212, (A.11)

q12121 = f12f21f12f21 + f121f12f21 + f12f212f21 + f1212f21 +

f12f21f121 + f121f121 + f12f2121 + f12121. (A.12)

Some of these expressions can be simplified, but here we prefer to avoid simplification.
Consider the elements of an h-sequence. Following the rules (A.5)–(A.6), write down the

expressions for h12121 and h21212:

h12121 = f12f21f12f21 + f12f212f21 + f1212f21 + f12f21f121 + f12f2121.
(A.13)

h21212 = −(f21f12f21f12 + f21f121f12 + f2121f12 + f21f12f212 + f21f1212)

b) The properties of infinite sums of q- and h-sequences

Introduce the values

f1−1 = f121 + f12121 + f1212121 + . . . (A.14)

f1−2 = f12 + f1212 + f121212 + . . . (A.15)

f2−1 = f21 + f2121 + f212121 + . . . (A.16)

f2−2 = f212 + f21212 + f2121212 + . . . (A.17)

i.e., the sum fν−µ contains all values with the indexes starting with ν and finishing with µ.
Note that unlike (3.11) the sums (A.14) and (A.17) do not contain f1 and f2.

Introduce the sums qν−µ and hν−µ analogously to (3.13) and (3.14).
Using the recursive relations, one can obtain the following formulae

q1−1f1−1 + q1−2f2−1 = q1−1 − 1, (A.18)

q1−1f1−2 + q1−2f2−2 = q1−2, (A.19)

q2−1f1−1 + q2−2f2−1 = q2−1, (A.20)

q2−1f1−2 + q2−2f2−2 = q2−2 − 1. (A.21)
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These relations can be rewritten in the matrix form and solved with respect to q:

(
q1−1 q1−2

q2−1 q2−2

)
=

(
1− f1−1 −f1−2

−f2−1 1− f2−2

)−1

, (A.22)

or in the components

q1−1 =
1− f2−2

N∗ , (A.23)

q2−1 =
f2−1

N∗ , (A.24)

q1−2 =
f1−2

N∗ , (A.25)

q2−2 =
1− f1−1

N∗ , , (A.26)

where N∗ is the determinant

N∗ =

∣∣∣∣
1− f1−1 −f1−2

−f2−1 1− f2−2

∣∣∣∣ . (A.27)

Consider the sequences q and h associated with the same set fn
.... One can see that

h2−1 = −f2−1q1−1, (A.28)

h1−2 = f1−2q2−2, (A.29)

h1−1 = f1−2q2−1, (A.30)

h2−2 = −f2−1q1−2. (A.31)

Using (A.28)–(A.31) and (A.23)-(A.26), we obtain an important equation

h1−1 = −h2−2 =
f1−2f2−1

N∗ . (A.32)

Taking into account (A.7) and (A.8), we obtain:

p1−1 = −p2−2, m1−1 = −m2−2. (A.33)

c) Calculation of the determinants N and N ∗

Let us show that the determinant N(k) defined by (3.19) is identically equal to 1. First, let us
show that it is a constant, i.e., does not depend on k.

Note that the formula (3.19) defines N as a function of k∗, but the variable k∗ in the
definition can be replaced by any symbol, e.g. by k.

Differentiate N(k) with respect to k. Using the relations (4.3) and after elementary trans-
formations, we obtain

(N(k))′ =
(

p1−1 + p2−2

k − k0

+
m1−1 + m2−2

k + k0

)
(G1−1G2−2 −G2−1G1−2) . (A.34)
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Taking into account the relations (A.33) we conclude that N ′ is identically equal to 0; it means
that N(k) is a constant.

To determine this constant one can study the behaviour of the determinant at infinity. Note
that all functions Gn

...(k) for n > 0 tend to zero like ∼ |k|−1 for large real k. Therefore, G1G2

is the main term of N(k). Thus,

G1−1(k)G2−2(k)−G1−2(k)G2−1(k) ≡ 1. (A.35)

Now consider the determinant N∗ defined by (A.27). This determinant is used for calculating
the coefficients m. We chose fm

ν... = F±(β±Gm−1
ν... ,−k0) as the set of values f .

According to the properties of the operators F ,

fm
...2 = −Gm

...2(−k0) = − lim
τ→−k0

Gm
...2(τ), (A.36)

fm
...1 = lim

τ→−k0

[β−(τ)Gm−1
...2 (τ)−Gm

...1(τ)]. (A.37)

Therefore

N∗ = lim
τ→−k0

[N(τ) + β−(τ)(G2−2(τ)G1−2(τ)−G1−2(τ)G2−2(τ))] ≡ 1. (A.38)

Taking into account the formulae (A.23)–(A.26) and (A.23)–(A.26), we conclude that

m2−1 = −f2−1(1− f2−2)

2
, (A.39)

m1−2 =
f1−2(1− f1−1)

2
, (A.40)

m1−1 =
f1−2f2−1

2
, (A.41)

m2−2 = −f1−2f2−1

2
. (A.42)

The properties of the coefficients p can be obtained from the properties of the coefficients
m by using the symmetry properties:

pµ−ν = mν−µ. (A.43)

d) Extra properties of the elements of h-sequences and the properties
of the finite sums of the functions G

We showed above that for the infinite sums of each h-sequence, the identity h1−1 = −h2−2 is
valid. Here we show that a stronger statement is valid, namely for any even n

hn
1...1 = −hn

2...2. (A.44)

The proof of this fact is known to the author, but it is tedious, and we do not demonstrate
it here. Discuss the corollaries of this property.
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The identities (A.33) following from (A.32) have been used to prove that N(k) ≡ 1. The
determinant N(k) is an infinite sum of the products of the functions G. It seems to be unex-
pected that the identity (A.35) can be split into an infinite sequence of the identities, each of
which contain a finite num of products:

G1(k)G2(k) ≡ 1,

G121(k)G2(k)−G21(k)G12(k) + G1(k)G212(k) ≡ 0,

G12121(k)G2(k)−G2121(k)G12(k) + G121(k)G212(k)−G21(k)G1212(k) +

+G1(k)G21212(k) ≡ 0,

. . .

i.e., for any even n 6= 0
n∑

m=0

(−1)mGn−m
...1 (k)Gm

...2(k) ≡ 0. (A.45)

The proof is elementary, but tedious. It is based on the identities (A.44).
The relations (A.45) seem to be unexpeted, but there exists one more proof of them based

on the Liouville’s theorem (see [5]).
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