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Abstract

The far field diffraction behaviour for canonical scattering problems involving cor-
ners or sectors, in three-dimensions, are considered. The far-field results are obtained
using ideas based upon embedding formulae and therefore complement and extend
existing results. Specific geometries such as the flat cone and a corner formed by
a solid octant are considered in detail. The formulae derived for the diffraction
behaviour are also computed in special cases and compared with known results.
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1 Introduction

The diffraction of waves by a sharp edge is a fundamental problem in many
areas: fracture mechanics, radar cross-section measurements, non-destructive
evaluation of structures and acoustic wave scattering, and much work has
taken place on characterising the far field scattered by canonical objects: a
half-plane, a wedge or a cone for use in conjunction with Keller’s geometri-
cal ray theory of diffraction [1]. Two-dimensional structures such as wedges
or half-planes are typically approached using the Sommerfeld integral [2] or
the Weiner-Hopf technique [3] and there is a vast literature extracting the far-
fields for various canonical scattering geometries. However, in three-dimensions
much less has been done, although naturally cones of circular cross-section [4,5]
do allow for some simplification and can be approached through Kantorovich-
Lebedev transforms; other shapes such as elliptical cross-section cones can also
be tackled [6,7] and this includes the degenerate case of a flat-cone. General
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three-dimensional corners and the flat-cone (a sector of a plane) can be tack-
led using an approach pioneered by Smyshlyaev and co-workers [8–10]. Their
approach is to extract the far-field using properties of the Laplace-Beltrami
operator on the unit sphere and the far field is represented as a contour inte-
gral involving the spherical Green’s function of the Laplace-Beltrami operator.
Numerical evaluation of the far-field is not easy, [10,11], and can be time-
consuming. As noted by one of us, [12], for a flat quarter plane computations
are optimised using embedding formulae. In this case one has to evaluate the
far-field created by an edge Green’s function and from it construct the far field
for any plane wave incidence, thus after solving a single “master” canonical
problem the others are then just a manipulation of this. In the current article
we build upon [12] showing that similar ideas can be used for a planar sector
of any angle, and we also extend the ideas to fully three-dimensional shapes
such as the edge of a cube (a solid octant). The latter extension relies upon the
higher order operators introduced in [13] for wedge geometries and illustrate
how the two-dimensional ideas used there translate into three dimensions.

Embedding formulae are a relatively new addition to the techniques utilised
in diffraction theory: the fundamental idea is that instead of solving, and
re-solving, the physical problem of interest for each different incoming plane
wave angle of incidence, instead one solves a single (or much reduced number
of) canonical problem(s). Then one constructs the far field of the physical
problem just in terms of the canonical far field. Thus, numerically one need
only solve the canonical problems, the subsequent manipulations are then a
trivial numerical exercise. The method emerged for scattering by planar strips
(cracks) in two-dimensional acoustics and initially utilised integral equation
techniques. Williams [14] showed that, for a finite straight rigid strip, the di-
rectivity for all incident angles is obtained from just that found for a plane
wave incident at the grazing angle. It is a rather remarkable result that hints
at some deeper result buried within the governing equation and associated
boundary conditions. Building on this framework several authors pursued this
integral equation approach for a variety of scattering problems [15–21]. The
approach taken in the current article follows a slightly different route. In [22]
it was shown that embedding formulae emerge directly from the governing
equations independent of the solution procedure and three dimensional ob-
jects could also be embedded (see also [12]). The approach utilises reciprocity,
the introduction of a differential operator that generates an eigensolution that
has edge conditions that are more singular than usual, and uniqueness. The
canonical problem requires an edge Green’s function with, in two (three) di-
mensions, a line (point) source placed on the sharp edges. For straight and
parallel cracks or strips the number of canonical solutions is equal, in the
absence of any symmetries, to the number of edges in two-dimensions. More
recently [13,23] extended embedding formulae to wedge and angular geome-
tries (of rational angle) or to cracks inclined at angles to each other, although
this is still in two-dimensions. The overly singular edge Green’s function ap-
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proach is arguably a bit awkward to use with existing numerical schemes and
[24] demonstrates how linear superposition can be used to create embedding
formulae using the far fields from problems involving incoming plane waves.
The current article takes the ideas utilised in [13], namely the higher order
operators required for wedge geometries, and shows how they can be used to
generate embedding formulae for some three dimensional structures namely
planar sectors and an octant; the planar sectors are a generalisation of the
quarter plane result [12] to any angle. To illustrate the utility of the formulae
derived we evaluate the far-field numerically for the sector and compare it
with that derived in [8–10].

The structure of this article is as follows: To illustrate the ideas behind em-
bedding formulae and the three-dimensional extension we begin in section 2
with the flat cone. This is an extension of the quarter-plane treated in [12]
to a sector of any angle (< π). Crucial to the embedding methodology are
edge Green’s functions, described in section 2.1.1 and a differential operator
that transforms the standard problem into an overly singular eigensolution.
The differential operator takes different forms and can be of either first or
second order. Sections 2.1.2-2.1.4 illustrate this and generate the appropri-
ate embedding formulae. A brief numerical verification and comparison of the
embedding formulae versus the standard diffraction results is undertaken in
section 2.2. The flat cone is quasi-two-dimensional, and closely related to the
quarter-plane, and so we move on to consider fully three-dimensional corner
structures. In section 3 a corner formed by a solid octant is considered and
operators utilised in [13] for right-angled wedges (in two-dimensions) are used.
Edge Green functions (section 3.1.1) again play a vital role and embedding
formulae are again deduced. We briefly discuss extensions to yet more gen-
eral geometries showing that the embedding idea is not restricted to simple
geometries; this and some closing remarks are in section 4.

2 The Flat Cone

For time-harmonic motion, where the variables are proportional to e−iΩt, the
wave equation becomes the Helmholtz equation

(∇2 + k2
0)u = 0, (2.1)

with k0 = Ω/c, and c the wave speed. In the first problem considered here the
Helmholtz equation is satisfied everywhere in 3-dimensional space, described
by Cartesian coordinates (x, y, z). A flat cone scatterer, shown in figure 1, is
present in the form of a sector of a plane, x > 0, 0 < y < x tan Θ, z = 0, upon
which the Dirichlet condition

u = 0 (2.2)
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Fig. 1. The planar sector showing the notation used for angles.

is satisfied. The lines

x > 0, y = 0, z = 0, and (2.3)

x > 0, y = x tan Θ, z = 0, (2.4)

are the edges of the sector, and are denoted by Λ1 and Λ2, respectively. The
angle between the edges is Θ. Hence, when Θ = π/2 this reduces to the
problem addressed by Shanin [12].

The incident field is the plane wave

uin = exp[−i(kxx + kyy + kzz)] (2.5)

where k2
0 = k2

x + k2
y + k2

z , and, as in [12], the edge conditions from the theory
of diffraction by an ideal half-plane are

u ∼ ρ
1

2

1,2 sin
(

α1,2

2

)

(2.6)

where ρ1,2 and α1,2 are local cylindrical radial and angular coordinates mea-
sured from the edges Λ1 and Λ2, respectively.

The vertex conditions, [12], are

u = O(1), ∇u = o(r−
1

2 ) as r → 0, (2.7)

and these ensure that the energy remains locally finite.

The total field u consists of the incident plane wave and a scattered field.
Overall the scattered field has complicated structure, due to plane wave scat-
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tering at the surface, and diffraction around the edges and the vertex. In the
far-field the leading order terms of the scattered field are identified as a plane
wave present in the geometric scattered region, together with a diffracted term
decaying as 1/r as r → ∞ where r is the distance from the vertex, together
with higher order terms. Thus the diffracted term has the form

u(ω, r) = 2π
eik0r

k0r
f(ω) + O(eik0r(k0r)

−2), (2.8)

where ω represents the angular coordinates of the observation point (e.g. spher-
ical polar coordinates). The diffraction coefficient f(ω) also depends on the
angle of incidence of the plane wave, ω0, and to make that explicit it is con-
venient to write

f = f(ω; ω0). (2.9)

The objective of this paper is to find expressions for the diffraction coefficient
f(ω; ω0) in terms of the edge Green’s functions for the problem. Hence, if
the far-field edge Green’s functions are known everywhere, the solution to the
scattering problem is constructed for any combination of angle of incidence
and observation, without the need to re-solve the problem each time.

2.1 Flat Cone Embedding Formulae

We begin with the flat cone (planar sector) and demonstrate that different em-
bedding formulae are found for various operators and provide a brief numerical
comparison with results from the standard approach.

2.1.1 Edge Green’s functions

Edge Green’s functions, Gx(x, y, z; X) and Gs(x, y, z; S), are introduced via a
limit process. For Gx(x, y, z; X) this is achieved by placing a point source of

strength
√

π/ǫ in the plane of the scattering cone, at a small distance ǫ away
from the edge Λ1, with X the distance from the vertex to the nearest point
on the edge to the source, and taking the limit as ǫ → 0:

(

∇2 + k2
0

)

Ĝx(x, y, z; X, ǫ) =

√

π

ǫ
δ(x − X)δ(y + ǫ)δ(z), (2.10)

Ĝx(x, y, z; X, ǫ) = 0 on x > 0, 0 < y < x tan Θ, z = 0, (2.11)

Ĝx(x, y, z; X, ǫ) ∼ ρ
1

2

1,2 sin
(

α1,2

2

)

on Λ1,2, (2.12)

Ĝx(x, y, z; X, ǫ) = O(1), ∇Ĝx = o(r−
1

2 ) as r → 0, (2.13)
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and

Gx(x, y, z; X) = lim
ǫ→0

Ĝx(x, y, z; X, ǫ). (2.14)

In the following analysis, the local behaviour of Gx(x, y, z; X) near the edge
Λ1 is required, and in particular the behaviour there of integrals of the type

I(x, y, z) =
∫

∞

0
h(X)Gx(x, y, z; X)dX. (2.15)

This local result is given in [12], as

I(x, ρ1, α1) = −h(x)√
π

ρ
−

1

2

1 sin
(

α1

2

)

+ O
(

ρ
1

2

1 sin
(

α1

2

))

, near Λ1. (2.16)

It is a special case of the result (A.9), for a point source near an infinitely

long wedge, with r0 = ǫ, θ0 = π and source strength
√

π/ǫ rather than −4π,

(the leading order term), together with a term ‘source-free’ on the edge Λ1

and represents the field scattered by the edge Λ2, (the O(
√

ρ1) term).

The Green’s function corresponding to the other edge, Λ2, Gs(x, y, z; S), is
defined in a similar way, with s being the co-ordinate measured from the
origin along the edge Λ2, and the argument S is the distance from the origin
along that edge of the source.

It is convenient to define some further notation here. Following Shanin [12],
the directivities fx and fs of the edge Green’s functions are defined from their
far-field asymptotic expansions as

Gx(x, y, z; X)= 2π
eik0r

k0r
fx(ω; X) + O

(

eik0r(k0r)
−2
)

, (2.17)

Gs(x, y, z; S)= 2π
eik0r

k0r
fs(ω; S) + O

(

eik0r(k0r)
−2
)

, (2.18)

and by symmetry

Gx(x, y, z; X)=Gs(x cos Θ + y sin Θ, x sin Θ − y cos Θ, z; X), (2.19)

fx(ξ, η; X)= fs(ξ cos Θ + η sin Θ, ξ sin Θ − η cos Θ; X), (2.20)

in which (ξ, η) are “Cartesian” co-ordinates

ξ = sin θ cos φ, η = sin θ sin φ, (2.21)

representing the projection of the point ω on the x-y plane. Additionally, the
asymptotic behaviour of the edge Green’s functions, Gs and Gx, near the
opposite edges, Λ1 and Λ2, respectively, are
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Gs(x, ρ1, α1; S) =
2CG(x; S)√

π
ρ

1

2

1 sin
α1

2
+ O

(

ρ
3

2

1

)

, near Λ1, (2.22)

Gx(s, ρ2, α2; X) =
2CG(s; X)√

π
ρ

1

2

2 sin
α2

2
+ O

(

ρ
3

2

2

)

, near Λ2, (2.23)

where (ρ1, α1, x), (ρ2, α2, s) are cylindrical polar co-ordinate systems with
Λ1,Λ2 respectively being the axis. Reciprocity allows the position of source
and observer to be interchanged, hence

CG(x; s) = CG(s; x). (2.24)

2.1.2 Embedding formula using the operator Hx = ∂/∂x + ikx

The embedding technique developed in [22]—[23] is applied here. Briefly, this
entails finding an operator that, when applied to the total field of the orig-
inal problem, produces a new field that satisfies the original equations, the
boundary conditions, the radiation condition and which has the appropriate
asymptotic behaviour near to any edges to ensure that it is ‘source-free’ there.
When these properties are satisfied, uniqueness arguments apply to show that
the new field is identically zero everywhere. Far-field asymptotic analysis of the
formal definition of the new field then allows an expression for the directivity
of the original scattered field to be extracted. In this section the operator

Hx =
∂

∂x
+ ikx, (2.25)

which has been used successfully in the past, [22], is applied to the total field
u. The resulting field Hx[u] has the following properties:

(1) Hx[u] satisfies the Helmholtz equation
(2) Hx[u] satisfies the Dirichlet boundary condition on the surfaces of the

scatterer
(3) Hx[u

in] ≡ 0 and hence Hx[u] = Hx[u
s], in which us is the outgoing scat-

tered field of the original problem. Thus Hx[u] also satisfies the radiation
condition.

However, the remaining requirement that the new field should have the correct

‘source-free’ behaviour at the edges ( ∼ ρ
1

2

1,2 as in equation (2.6)), although
met on Λ1, is not met on Λ2, as shown below: From equation (2.6) the field
near Λ1 is expressed in the form

u(x, ρ1, α1) =
2Cx(x)√

π
ρ

1

2

1 sin
α1

2
+ o(ρ

1

2

1 ) near Λ1, (2.26)
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in which Cx(x) is an as yet unknown function of x. Hence

Hx[u] =
2 (C ′

x(x) + ikxCx(x))√
π

ρ
1

2

1 sin
α1

2
+ o(ρ

1

2

1 ) near Λ1, (2.27)

which has the required ρ
1

2

1 behaviour. Similarly, near to Λ2 the field is

u(s, ρ2, α2) =
2Cs(s)√

π
ρ

1

2

2 sin
α2

2
+ o(ρ

1

2

2 ). (2.28)

Differentiation with respect to x is accomplished by considering a rotation of
the x and y axes through angle Θ, so they correspond with the s axis and
perpendicular to it a t̃ axis, such that

ρ2
2 = t̃2 + z2, tanα2 = −z/t̃, (2.29)

and
s = x cos Θ + y sin Θ, t̃ = −x sin Θ + y cos Θ. (2.30)

Performing the differentiation gives, near Λ2

Hx[u] =
− sin ΘCs(s)√

π
ρ
−

1

2

2 sin
α2

2
+ O

(

ρ
1

2

2

)

(2.31)

and hence Hx[u] does not have the required behaviour there and so, in this
particular example, appears to fail the required criteria for generating embed-
ding formulae. However, from equations (2.15) and (2.16) another expression
can be constructed with this leading order behaviour near to Λ2:

sin Θ
∫

∞

0
Cs(S)Gs(x, y, z; S)dS =

− sin ΘCs(s)√
π

ρ
−

1

2

2 sin
α2

2
+ O

(

ρ
1

2

2

)

, (2.32)

and hence, by defining,

u∗ = Hx[u] − sin Θ
∫

∞

0
Cs(S)Gs(x, y, z; S)dS, (2.33)

a function is constructed which has the required asymptotic behaviour near
the edge Λ2. The second term above is a superposition of Green’s functions
with sources along the edge Λ2, each of which satisfies the Helmholtz equa-
tion, the boundary conditions on the scatterer faces, and has the required
edge behaviour near to Λ1. Importantly, after a detailed study one can prove
that the vertex condition is also satisfied. Hence the combination of terms u∗

satisfies all the requirements needed for the embedding method. Then, from
uniqueness arguments

u∗ ≡ 0 (2.34)

and
Hx[u(x, y, z)] = sin Θ

∫

∞

0
Cs(S)Gs(x, y, z; S)dS. (2.35)
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This is the weak form of the embedding formula, and corresponds to Shanin’s [12]
equation (18) for a cone with angle π/2, but now generalised to a cone of gen-
eral angle Θ.

The, at present, unknown function Cs is determined using a reciprocity argu-

ment, between a point source of strength
√

π/ǫ used in the definition of Ĝs

(and hence in the limiting case as ǫ → 0 of Gs) at distance S along edge Λ2

and a point at angular location ω0 at distance r in the far-field. The leading
order term of the far-field due to the source with this amplitude located near
to Λ2, G21 say, is obtained directly from equation (2.18)

G21 ∼ 2π
eik0r

k0r
fs(ω0; S). (2.36)

If the source is located in the far-field then, near the vertex of the scatterer
the incident field from the source is approximately that of a plane wave of

amplitude −
√

π/ǫeik0r/4πr. Hence the leading order term of the total field near

the point S on Λ2, u12 say, is obtained, by comparison with equation (2.28)
which is for a plane wave of unit amplitude, as

u12 ∼ −
√

π

ǫ

eik0r

4πr

2Cs(s)√
π

ρ
1

2

2 sin
α2

2
near Λ2. (2.37)

At the point under discussion, s = S, ρ2 = ǫ and α2 = π, hence

G12 ∼ −
√

π

ǫ

eik0r

4πr

2Cs(S)√
π

√
ǫ =

−eik0rCs(S)

2πr
. (2.38)

Applying the reciprocity principle, that the same result is obtained if the
source and observer positions are interchanged, shows that

G12 = G21 (2.39)

and hence an expression for the unknown function Cs(S) is obtained as

Cs(S) = −(2π)2

k0
fs(ω0; S), (2.40)

allowing equation (2.35) to be expressed as

Hx[u(x, y, z)] =
−(2π)2 sin Θ

k0

∫

∞

0
fs(ω0; S)Gs(x, y, z; S)dS. (2.41)

After noting that in the far-field ∂/∂x corresponds to ik0ξ, the far-field ap-
proximation of this equation results in the embedding formula

f(ω; ω0) =
4π2i sin Θ

k2
0(ξ + ξ0)

∫

∞

0
fs(ω0; S)fs(ω; S)dS. (2.42)
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corresponding to Shanin’s [12] equation (12) in the limit as the sector angle
is π/2, but now generalised to a flat cone of general angle Θ.

2.1.3 Using the operator Hy = ∂/∂y + iky

In [12] Shanin also presents a first order embedding formula based on the op-
erator Hy for the problem of scattering by a quarter plane. This is particularly
appropriate to that geometry since the y-axis is the second edge of the scat-
terer and the result follows immediately by symmetry. This is not the case for
a scatterer of arbitrary angle, considered here.

It is clear that the field defined by Hy[u] satisfies the requirements listed as 1–3
of the previous subsection, but in this case it fails the requirement of the edge
behaviour, not only on Λ2 but also on Λ1. Fortunately a slight modification
allows us to subtract the singular behaviour along both of the edges, setting

u∗ = Hy[u] −
∫

∞

0
Cx(X)Gx(x, y, z; X)dX + cos Θ

∫

∞

0
Cs(S)Gs(x, y, z; S)dS,

(2.43)
produces a field satisfying all the requirements for the embedding method.
Thus

u∗ ≡ 0, (2.44)

and

Hy[u(x, y, z)] =
∫

∞

0
Cx(X)Gx(x, y, z; X)dX−cos Θ

∫

∞

0
Cs(S)Gs(x, y, z; S)dS,

(2.45)
as the weak form of the embedding formula for this operator. Equation (2.40)
relating Cs(S) and fs(ω0; S), derived previously, holds in this case too, together
with the corresponding equation relating Cx(X) and fx(ω0; X). Substituting
these into equation (2.45) and applying the far-field approximation results in
the embedding formula

f(ω; ω0) =
4π2i

k2
0(η + η0)

{
∫

∞

0
fx(ω0; X)fx(ω; X)dX − cos Θ

∫

∞

0
fs(ω0; S)fs(ω; S)dS

}

,

(2.46)
corresponding to Shanin’s [12] equation (13) for a cone with angle π/2, but
now generalised to a cone of general angle Θ.

Similarly we can use the operator Hs = ∂/∂s + ik0(ξ0 cos Θ + η0 sin Θ) as a
rotation of axes gives

Hs[u] = cos ΘHx[u] + sin ΘHy[u] = sin Θ
∫

∞

0
Cx(X)Gx(x, y, z; X)dX, (2.47)
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to get

f(ω; ω0) =
4π2i sin Θ

k2
0 (cos Θ(ξ + ξ0) + sin Θ(η + η0))

∫

∞

0
fx(ω0; X)fx(ω; X)dX,

(2.48)
which could also be considered to correspond to Shanin’s [12] equation (13)
for a cone with angle π/2, but generalised to a cone of general angle Θ.

2.1.4 Using a “second order” operator

Embedding formulae are also obtained using suitable higher order operators,
provided the requirements outlined above are met. In [12] the second order
operator Hxy[u] = Hx[Hy[u]] is used to obtain a different embedding formula
for the right angled flat cone. Here, for a flat cone with angle Θ a corresponding
embedding formula is obtained using the operator

Hxs =

(

∂

∂x
+ ik0ξ0

)(

∂

∂s
+ ik0(ξ0 cos Θ + η0 sin Θ)

)

. (2.49)

The asymptotic behaviour near the Λ2 edge is found, from equations (2.31)
and (2.32), to be

Hxs[u] ∼ −
(

∂

∂s
+ ik0(ξ0 cos Θ + η0 sin Θ)

)

sin ΘCs(s)√
π

ρ
−

1

2

2 sin
α2

2

∼ sin Θ
∫

∞

0

[

∂

∂S
Cs(S) + ik0(ξ0 cos Θ + η0 sin Θ)Cs(S)

]

Gs(x, y, z; S)dS.

(2.50)
Similarly, near Λ1 the asymptotic behaviour is

Hxs[u]∼−
(

∂

∂x
+ ik0ξ0

)

sin ΘCx(x)√
π

ρ
−

1

2

1 sin
α1

2

∼ sin Θ
∫

∞

0

[

∂

∂X
Cx(X) + ik0ξ0Cx(X)

]

Gx(x, y, z; X)dX.

(2.51)

Thus a field u∗ satisfying all the properties required is constructed:

u∗ =Hxs[u] − sin Θ
∫

∞

0

[

∂

∂S
Cs(S) + ik0(ξ0 cos Θ + η0 sin Θ)Cs(S)

]

Gs(x, y, z; S)dS

− sin Θ
∫

∞

0

[

∂

∂X
Cx(X) + ik0ξ0Cx(X)

]

Gx(x, y, z; X)dX. (2.52)

11



Hence, again u∗ ≡ 0, and thus the weak form of embedding from this operator
is

Hxs[u(x, y, z)]= sin Θ
∫

∞

0

[

∂

∂S
Cs(S) + ik0 (ξ0 cos Θ + η0 sin Θ) Cs(S)

]

Gs(x, y, z; S)dS

+ sin Θ
∫

∞

0

[

∂

∂X
Cx(X) + ik0ξ0Cx(X)

]

Gx(x, y, z; X)dX. (2.53)

After noting that equation (2.40) for Cs, and the corresponding relation for Cx

remain valid, and applying the far-field asymptotic expansions the embedding
formula obtained using this second order operator is

f(ω; ω0) =
4π2 sin Θ

k3
0(ξ + ξ0) (cos Θ(ξ + ξ0) + sin Θ(η + η0))

×
{

∫

∞

0

[

∂

∂S
fs(ω0; S) + ik0 (ξ0 cos Θ + η0 sin Θ) fs(ω0; S)

]

fs(ω; S)dS

+
∫

∞

0

[

∂

∂X
fx(ω0; X) + ik0ξ0fx(ω0; X)

]

fx(ω; X)dX

}

. (2.54)

This formula requires derivatives with respect to the source position of the
directivities of the edge Green’s functions, whose calculation requires more
computational effort than the Green’s functions themselves. It is therefore de-
sirable to rearrange the formula to avoid the necessity of calculating them.
This is achieved by first considering ∂Gx(x, y, z; X)/∂X, which satisfies the
Helmholtz equation everywhere except at the source position. However, the
combination ∂Gx/∂X + ∂Gx/∂x has no singularity as x → X and there-
fore satisfies the Helmholtz equation everywhere. Additionally it satisfies the
boundary conditions on the faces of the flat cone, the radiation condition, and
the edge condition on Λ1. It does however still have singular behaviour near
Λ2, since, following the method outlined in (2.28)–(2.32), but with u replaced
now with Gx and Cs(s) replaced now with CG(s; X),

∂Gx

∂x
∼ − sin ΘCG(s; X)√

π
ρ
−

1

2

2 sin
α2

2
+ O

(

ρ
1

2

2

)

near Λ2

∼ sin Θ
∫

∞

0
CG(S; X)Gs(x, y, z; S)dS + O

(

ρ
1

2

2

)

near Λ2. (2.55)

Hence,

∂Gx

∂X
+

∂Gx

∂x
− sin Θ

∫

∞

0
CG(S; X)Gs(x, y, z; S)dS ∼ O

(

ρ
1

2

2

)

near Λ2,

(2.56)
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and the left hand side of this equation now satisfies the Helmholtz equation,
the boundary conditions on the faces, the edge conditions on both edges and
the radiation condition. Therefore, by a further application of the uniqueness
argument it is identically zero everywhere. Thus

∂Gx

∂X
= −∂Gx

∂x
+ sin Θ

∫

∞

0
CG(S; X)Gs(x, y, z; S)dS, (2.57)

and in the far-field

∂

∂X
fx(ω0; X) = −ik0ξ0fx(ω0; X) + sin Θ

∫

∞

0
CG(S; X)fs(ω0; S)dS. (2.58)

Similarly, by considering the behaviour of ∂Gs/∂S + ∂Gs/∂s

∂Gs

∂S
= −∂Gs

∂s
+ sin Θ

∫

∞

0
CG(X; S)Gx(x, y, z; X)dX, (2.59)

which has the far-field form

∂

∂S
fs(ω0; S) = −ik0 (ξ0 cos Θ + η0 sin Θ) fs(ω0; S)+sin Θ

∫

∞

0
CG(X; S)fx(ω0; X)dX.

(2.60)
Thus, by substituting (2.58) and (2.60) into the embedding formula (2.54) the
embedding formula is obtained in the form of a double integral, corresponding
to Shanin’s [12] equation (14) as

f(ω; ω0)=
4π2 sin Θ

k3
0(ξ + ξ0) (cos Θ(ξ + ξ0) + sin Θ(η + η0))

×
∫

∞

0

∫

∞

0
[fx(ω; X)fs(ω0; S) + fx(ω0; X)fs(ω; S)]CG(X; S)dXdS.

(2.61)

2.2 Numerical Results

For the embedding formulae to be of value it is important to demonstrate that
they reproduce the results found using the standard formula for the directivity:

f(ω; ω0) =
i

π

∫

γ
e−iπνgr(ω, ω0, ν)νdν (2.62)

where gr is the “reflected” part of the Green’s function on the sphere with a
cut. The details of this formula are to be found in [10]. We choose to com-
pare this with the embedding formula (2.42) and require the edge Green’s
functions. The embedding formula is written in terms of the spherical edge

13



Green’s function v1(ω, ν) derived in [25] as

f(ω; ω0) =

1

4πi(η(ω) + η(ω0))

∫ i∞−1/2

−i∞−1/2
(v1(ω, ν)v1(ω0, ν + 1) + v1(ω, ν + 1)v1(ω0, ν))dν

(2.63)
where η(ω) = sin θ(ω) sin(φ(ω)). To allow a brief and simple comparison across
several sector angles we just consider the incidence direction to be at the axis
of symmetry of the cone, i.e. it has spherical coordinates θ = π/2, φ = π+Θ/2.
The scattering directions are taken in the sagittal plane, i.e. they have spheri-
cal coordinates θ = θsc, φ = π+Θ/2 for various θsc. In this case the diffraction
coefficient is purely imaginary and it is plotted versus θsc in figure 2. Numeri-
cally we find that the real part of the diffraction coefficients calculated either
way is extremely small. In figure 2 the embedding result and the standard re-
sult are compared and the results are visually indistinguishable the maximal
difference is ∼ 3·10−4. It is naturally reassuring that the numerical comparison
is easily performed and accurate.

0 0.5 1 1.5
−0.2

−0.15

−0.1

−0.05

0

θ

Im
ag

(f
)

 

 

Θ=π/4
Θ=π/2
Θ=3π/4

Fig. 2. Numerical results: the directivity function along the sagittal plane for three
sectoral angles. The crosses are from the embedding formulae and the lines from
the standard Smyshlyaev result.

3 The Solid Cone

In the second problem considered here a 3-D solid cone occupies the 1/8 space,
octant, defined by x > 0, y > 0, z > 0, as shown in figure 3. The cone surfaces
are the three quarter planes, subtending angle π/2: (i) x = 0, y > 0, z > 0,
S1 say, (ii) y = 0, x > 0, z > 0, S2 say, and (iii) z = 0, x > 0, y > 0, S3 say,
which are mutually at right angles. The edges are denoted Λ1, the positive
x-axis, y = 0, z = 0, Λ2, the positive y-axis, x = 0, z = 0 and Λ3, the positive
z-axis, x = 0, y = 0. An acoustic medium occupies everywhere except for the
octant x > 0, y > 0, z > 0. The incident field is a plane wave described by
equation (2.5).
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 1

edge

Fig. 3. Octant geometry formed by three perpendicular quarter planes.

Dirichlet boundary conditions, (2.2), are taken on the three planar surfaces of
the cone and the edge conditions are obtained from the theory of diffraction
by an ideal infinitely long wedge subtending an angle of π/2, as

u ∼ ρ
2

3

1,2,3 sin
(

2α1,2,3

3

)

(3.1)

where ρ1,2,3 and α1,2,3 are local cylindrical radial and angular coordinates mea-
sured from the edges Λ1, Λ2 and Λ3, respectively.

As in the previous example the total field consists of the incident field and
a scattered field, which can itself be considered as a plane wave present in
the geometric scattered region together with a diffracted term. The far-field
of the diffracted term is again characterised by the diffraction coefficient, or
directivity, f(ω; ω0), defined as in equation (2.8).

3.1 Solid Cone Embedding Formulae

3.1.1 Edge Green’s functions

Edge Green’s functions, G1x(x, y, z; X), G1y(x, y, z; Y ) and G1z(x, y, z; Z), are
now introduced via a limit process as described in detail in Appendix A.
For this geometry the angle between the planes is π/2, and thus p = 1 and
q = 2 in the notation used in Appendix A. For G1z(x, y, z; Z), for example,

this is achieved by placing a point source of strength 1/ǫ
2

3 in the plane of
the scattering cone, at a small distance ǫ away from the edge Λ3, with Z the
distance from the vertex to the nearest point on the edge to the source, and
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taking the limit as ǫ → 0:

(∇2 + k2
0)Ĝ1z = 4πδ(x − ǫ/

√
2)δ(y − ǫ/

√
2)δ(z − z0)/ǫ

2

3 =

4πδ(ρ3 − ǫ)δ(α3 − θ0)δ(z − z0)/ǫ
2

3 ρ3 (3.1)

where ρ3, α3 and z are local cylindrical polar coordinates and the fluid occupies
0 < α3 < 3π/2, θ0 = 3π/4 and ǫ → 0. The different power of ǫ on the right
hand side here compared to equation (2.10) reflects the different geometry
here. These edge Green’s functions must also satisfy the boundary, edge and
radiation conditions required of the original problem:

Ĝ1z(x, y, z; Z, ǫ) = 0 on S1,2,3, (3.2)

Ĝ1z(x, y, z; Z, ǫ) ∼ ρ
2

3

1,2,3 sin
(

2α1,2,3

3

)

on Λ1,2,3, (3.3)

and

G1z(x, y, z; Z) = lim
ǫ→0

Ĝ1z(x, y, z; Z, ǫ). (3.4)

The important local result for this Green’s function, obtained from Appendix A,
is that near Λ3

∫

∞

0
h(Z)G1z(x, y, z; Z)dZ = −4h(z)ρ

−
2

3

3 sin
(

2α3

3

)

+ O
(

ρ
2

3

3 sin
(

2α3

3

))

,

(3.5)
together with corresponding results for the integrals of G1x(x, y, z; X) and
G1y(x, y, z; Y ).

For this more complicated geometry we need to introduce the ‘dipole edge
Green’s functions’, G2x(x, y, z; X), G2y(x, y, z; Y ) and G2z(x, y, z; Z), satisfy-
ing the boundary, edge and radiation conditions. and, for G2z(x, y, z; Z) for
example,

(∇2 + k2
0)G2z = 4πδ(ρ3 − ǫ)δ′(α3 − θ0)δ(z − z0)/ǫ

4

3 ρ3 (3.6)

in which a shorthand notation has been used, where the limit as ǫ → 0 is now
assumed. The details of the derivation and properties of these ‘dipole edge
Green’s functions’ is presented in Appendix A. The important local result for
this dipole Green’s function, corresponding to equation (3.5), is obtained from
Appendix A as

∫

∞

0
h(Z)G2z(x, y, z; Z)dZ = −8

3
h(z)ρ

−
4

3

3 sin
(

4α3

3

)

+ O
(

ρ
2

3

3

)

, near Λ3,

(3.7)
together with corresponding results for the integrals of G2x(x, y, z; X) and
G2y(x, y, z; Y ).
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3.1.2 Using the operator H2x = ∂2/∂x2 + k2
x

In [13] and [23] it was demonstrated that for wedge shaped geometries higher
order operators were needed to construct embedding formulae than those
needed for line geometries. In [13] the higher order operators Hpx were de-
fined as

Hpx = (ik0)
p

[

Tp

(

i

k0

∂

∂x

)

− Tp

(

kx

k0

)]

(3.8)

where Tp is the Tchebychev polynomial of order p, and used for wedge geome-
tries of more general angle. In particular for 2–D wedges with angle π/2 oper-
ators of a least second order are necessary and the operator H2x = ∂2/∂x2 +k2

x

was used. Hence, for this problem in which the cone surfaces are all mutually
perpendicular the simple second order operator H2x will be used as the ba-
sis for constructing an embedding formula. The resulting field H2x[u] has the
following properties:

(1) H2x[u] satisfies the Helmholtz equation.
(2) H2x[u] satisfies the Dirichlet boundary condition on each of the surfaces

of the cone. On S2 and S3 u ≡ 0 there and hence clearly ∂u/∂x ≡ 0 and
∂2u/∂x2 ≡ 0 there also. On S1, since u satisfies the Helmholtz equation,
H2x[u] is rewritten as

H2x[u] =

(

k2
x − k2

0 −
∂2

∂y2
− ∂2

∂z2

)

u, (3.9)

and since u ≡ 0 on S1 clearly ∂2u/∂y2 ≡ 0 and ∂2u/∂z2 ≡ 0 there too.
(3) H2x[u

in] ≡ 0, hence H2x[u] satisfies the radiation condition.

However, although this new field satisfies the edge conditions on Λ1, it does
not have ‘source-free’ behaviour near to the edges Λ2 and Λ3. For example,
near to Λ2,

u(y, ρ2, α2) = Cy(y)ρ
2

3

2 sin
2α2

3
+ Dy(y)ρ

4

3

2 sin
4α2

3
+ o(ρ

4

3

2 ), (3.10)

where the unknown functions Cy(y) and Dy(y) are still to be determined.
Hence, after differentiating with respect to x as in §2.1, it is found that

H2x[u] = −2

9
Cy(y)ρ

−
4

3

2 sin
4α2

3
+

4

9
Dy(y)ρ

−
2

3

2 sin
2α2

3
+O(ρ

2

3

2 ) near Λ2, (3.11)

and hence does not have the required behaviour near Λ2. These singular com-
binations of ρ2 and α2 are precisely the terms which occur as the leading order
terms of integrals similar to those of equations (3.7) and (3.5), allowing the
construction of an expression which is non-singular near Λ2:

H2x[u]− 1

12

∫

∞

0
Cy(Y )G2y(x, y, z; Y )dY +

1

9

∫

∞

0
Dy(Y )G1y(x, y, z; Y )dY = O(ρ

2

3

2 ).

(3.12)
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Similarly, near Λ3

H2x[u] = −2

9
Cz(z)ρ

−
4

3

3 sin
4α3

3
+

4

9
Dz(z)ρ

−
2

3

3 sin
2α3

3
+ O(ρ

2

3

3 ), (3.13)

and

H2x[u]− 1

12

∫

∞

0
Cz(Z)G2z(x, y, z; Z)dZ+

1

9

∫

∞

0
Dz(Z)G1z(x, y, z; Z)dZ = O(ρ

2

3

3 ).

(3.14)
Hence, by combining results (3.12) and (3.14) a function u∗ can be constructed
for this problem as

u∗=H2x[u] − 1

12

∫

∞

0
Cy(Y )G2y(x, y, z; Y )dY +

1

9

∫

∞

0
Dy(Y )G1y(x, y, z; Y )dY

− 1

12

∫

∞

0
Cz(Z)G2z(x, y, z; Z)dZ +

1

9

∫

∞

0
Dz(Z)G1z(x, y, z; Z)dZ, (3.15)

a combination which has the required asymptotic behaviour near all three
edges Λ1, Λ2 and Λ3. The additional terms added to H2x[u] above are all
combinations of Green’s functions which, away from the edges, satisfy the
Helmholtz equation, the Dirichlet boundary conditions on the cone surfaces
and the radiation condition. Then, applying the uniqueness argument again
the function u∗ is found to be identically zero everywhere and

H2x[u(x, y, z)]=−1

9

∫

∞

0
Dy(Y )G1y(x, y, z; Y )dY +

1

12

∫

∞

0
Cy(Y )G2y(x, y, z; Y )dY

−1

9

∫

∞

0
Dz(Z)G1z(x, y, z; Z)dZ +

1

12

∫

∞

0
Cz(Z)G2z(x, y, z; Z)dZ,

(3.16)

which is the weak form of the embedding formula for this problem.

The unknown functions Cy(Y ), Cz(Z), Dy(Y ) and Dz(Z) are determined using
similar reciprocity arguments to those used in the previous section. Thus, for
example consider a monopole point source of strength 4π/ǫ

2

3 , used in the
definition of Ĝ1y (and hence in the limiting case as ǫ → 0 of G1y) at distance
Y along edge Λ2 and the same source at angular location ω0 at distance r in
the far-field. The leading order term of the far-field due to the source near Λ2,
GY F say, is obtained from its directivity

GY F ∼ 2π
eik0r

k0r
f1y(ω0; Y ). (3.17)

Correspondingly, if this source is located in the far-field then, near the vertex
of the cone the incident field from the source is approximately that of a plane

18



wave of amplitude −eik0r/(ǫ
2

3 r) and hence the leading order terms of the to-
tal field near the point Y on Λ2, uFY say, is obtained, by comparison with
equation (3.10) as

uFY ∼ −eik0r

ǫ
2

3 r

{

Cy(y)ρ
2

3

2 sin
2α2

3
+ Dy(y)ρ

4

3

2 sin
4α2

3

}

near Λ2. (3.18)

At the point under discussion, y = Y , ρ2 = ǫ and α2 = 3π/4, hence

GFY ∼ −eik0rCy(Y )

r
. (3.19)

Applying the reciprocity principle, that the same result is obtained if the
source and observer positions are interchanged, shows that

GY F = GFY (3.20)

and hence an expression for the unknown function Cy(Y ) is obtained as

Cy(Y ) = −2π

k0
f1y(ω0; Y ), (3.21)

Cz(Z) follows by replacing y, Y with z, Z in (3.21). In order to obtain an

expression for Dy(Y ), consider first the dipole source of strength 4π/ǫ
4

3 , used

in the definition of Ĝ2y (and hence in the limiting case as ǫ → 0 of G2y) at
distance Y along edge Λ2. The leading order term of the far-field due to this

source near Λ2, DY F say, is obtained from the directivity of the dipole edge
Green’s function, as

DY F ∼ 2π
eik0r

k0r
f2y(ω0; Y ). (3.22)

A second expression for this term is obtained by noting that the source term
in the definition of Ĝ2y is ǫ−

2

3 ∂/∂α2 of the source term in the definition of Ĝ1y.

Formally, this is −ǫ−
2

3 ∂/∂θ0 of the Ĝ1y source term, where θ0 is the angular
coordinate of the source location. From the reciprocity discussed above, the
far-field due to the Ĝ1y source at θ0 is the same as the field at θ0 near to Λ2

due to the source in the far-field. Hence, the far-field of the dipole source is
expressed as

DY F ∼− 1

ǫ
2

3

∂

∂θ0

[

−eik0r

ǫ
2

3 r

{

Cy(y)ρ
2

3

2 sin
2θ0

3
+ Dy(y)ρ

4

3

2 sin
4θ0

3

}]∣

∣

∣

∣

∣

θ0=
3π

4
,y=Y,ρ2=ǫ

=
1

ǫ
4

3

eik0r

r

{

2

3
Cy(y)ρ

2

3

2 cos
2θ0

3
+

4

3
Dy(y)ρ

4

3

2 cos
4θ0

3

}∣

∣

∣

∣

∣

θ0=
3π

4
,y=Y,ρ2=ǫ

.

(3.23)
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Hence,

DY F = −4

3

eik0r

r
Dy(Y ). (3.24)

Thus, by equating equations (3.22) and (3.24) the unknown function Dy(Y )
is obtained in terms of the dipole directivity as

Dy(Y ) = −3

2

π

k0

f2y(ω0; Y ), (3.25)

and Dz(Z) follows by replacing y, Y with z, Z in (3.25). An embedding formula
is then obtained for this problem by taking the far-field approximation of the
weak embedding formula (3.16), substituting for Cy(Y ), Cz(Z), Dy(Y ) and
Dz(Z), using equations (3.21), (3.25), and noting that ∂2/∂x2 corresponds to
−k2

0ξ
2 in the far-field, as

f(ω; ω0) =
−π

6k3
0(ξ

2 − ξ2
0)

(
∫

∞

0
{f2z(ω0; Z)f1z(ω; Z) − f1z(ω0; Z)f2z(ω; Z)}dZ

+
∫

∞

0
{f2y(ω0; Y )f1y(ω; Y ) − f1y(ω0; Y )f2y(ω; Y )}dY

)

.

(3.26)

This embedding formula corresponds to Shanin’s [12] equation (12) generalised
from a flat cone with perpendicular edges to the case of a solid cone with
perpendicular faces.

It is useful for practical purposes, that is, for computations such as those in
section 2.2, to be able to write this embedding formula in terms of the edge
Green’s functions on a sphere so they are in a similar form to (2.63). We briefly
derive this form of the formulae, to do so we require the spherical coordinates,
ζx,y,z, φx,y,z, shown in figure 4, and then we introduce edge Green’s functions
on a sphere v1z(ω, ν) and v2z(ω, ν) as the results of limiting procedures:

v1z(ω, ν) = lim
κ→0

v̂1z(ω, ν, κ), v2z(ω, ν) = lim
κ→0

v̂2z(ω, ν, κ), (3.27)

where v̂1z(ω, ν, κ) and v̂2z(ω, ν, κ) are solutions of the following problems:

∆̃ν v̂1z(ω, ν, κ) = κ−
2

3

1

sin ζz
δ(ζz − ζκ)δ(φ

z − φκ) on S, (3.28)

v̂1z(ω, ν, κ) = 0 on ∂S, (3.29)

∆̃ν v̂2z(ω, ν, κ) = κ−
4

3

1

sin ζz
δ(ζz − ζκ)δ

′(φz − φκ) on S, (3.30)

v̂2z(ω, ν, κ) = 0 on ∂S (3.31)

where S is the surface of the unit sphere without the piece excised by cone,
and ∂S is the boundary of S, i.e. the cuts corresponding to cross-sections of
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Fig. 4. Spherical coordinates for the edge Green’s functions.

the cone. The differential operator ∆̃ν is ∆̃ν =
(

∆̃ + ν2 − 1
4

)

and ∆̃ is the

angular part of the Laplacian operator, ζκ = κ and φκ = 3π
4

. The edge Green’s
functions v̂1z(ω, ν, κ) and v̂2z(ω, ν, κ) are the fields of monopole and dipole
point sources placed near the projection of the z-edge of the cone.

Equation (3.26) consists of four terms that are obtained from each other by
interchanging variables as ω ↔ ω0 and z ↔ y, so we need only consider the
first term

f̃(ω; ω0) = − π

6k3
0(ξ

2 − ξ2
0)

∫

∞

0
f2z(ω0, Z)f1z(ω, Z)dZ. (3.32)

After considerable algebra, and using the properties of the edge Green’s func-
tions, in both physical space and in their form on a sphere, one can eventually
deduce the first term of the embedding formula in the modified Smyshlyaev
form

f̃(ω; ω0) =
i

12

1

(ξ2 − ξ2
0)

∫

Γ
e−iπν

(

v1z(ω, ν)v2z(ω0, ν − 2) + v1z(ω, ν − 2)v2z(ω0, ν)

ν − 1

− 2ν

ν2 − 1
v1z(ω, ν)v2z(ω0, ν)

)

dν (3.33)
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Fig. 5. The contour of integration required for the integral in (3.33).

where the contour Γ is shown in figure 5, and thus one can build an expression
for f(ω; ω0). Notably the contour is the usual large loop enclosing the positive
real axis for ν, but with some poles excluded. The points νj and νj +2, where
νj are the points of the spectrum of the Laplace-Beltrami Dirichlet problem,
are all possible poles of the integrand. Potential problems are produced by
points 1 and 2−νj for νj < 2, and so these points are explicitly excluded from
the contour; this is analogous to the subtraction of poles in [12].

3.1.3 Other second order operators

Further embedding formulae are obtained using operators corresponding to
differentiation in the other coordinate directions. Thus, making use of the
operator

H2y =
∂2

∂y2
+ k2

y (3.34)

the embedding formula

f(ω; ω0) =
−π

6k3
0(η

2 − η2
0)

(
∫

∞

0
{f2x(ω0; X)f1x(ω; X) − f1x(ω0; X)f2x(ω; X)}dX

+
∫

∞

0
{f2z(ω0; Z)f1z(ω; Z) − f1z(ω0; Z)f2z(ω; Z)}dZ

)

(3.35)
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Fig. 6. Additional parallel face geometry.

is obtained, and using the operator

H2z =
∂2

∂z2
+ k2

0(1 − ξ2
0 − η2

0) (3.36)

the embedding formula

f(ω; ω0)=
π

6k3
0(ξ

2 + η2 − ξ2
0 − η2

0)

(
∫

∞

0
{f2x(ω0; X)f1x(ω; X) − f1x(ω0; X)f2x(ω; X)}dX

+
∫

∞

0
{f2y(ω0; Y )f1y(ω; Y ) − f1y(ω0; Y )f2y(ω; Y )} dY

)

(3.37)

is obtained.

4 Extensions and closing remarks

It becomes clear that the entire embedding procedure can be applied to scat-
tering by quite general shapes. The key being the existence of an operator that
kills the incoming field and preserves the boundary conditions. The results of
the previous section can be used with only minor alterations for some related
geometries. In particular the modification is straightforward if an additional
face is present, parallel to one of the existing faces, as shown in figure 6. Sup-
pose that an additional face S4 is present, parallel to S3 with x > 0, y > 0,
z = z0, producing edges Λ4, x > 0, y = 0, z = z0, and Λ5, x = 0, y > 0,
z = z0, and the scattering cone occupying x > 0, y > 0, 0 < z < z0. Because
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the extra faces and edges introduced here are parallel to existing faces and
edges the same operators can be used, as they will still preserve the Dirichlet
boundary condition on all the faces, and have similar effects on the edges.
Any integrations then take place along the length of all relevant edges. Hence,
with slightly modified notation for the edge Green’s functions and using the
operator H2x, the embedding formula

f(ω; ω0)=
−π

6k3
0(ξ

2 − ξ2
0)

(
∫

∞

0
{f2y(ω0; Y, z0)f1y(ω; Y, z0) − f1y(ω0; Y, z0)f2y(ω; Y, z0)} dY

+
∫

∞

0
{f2y(ω0; Y, 0)f1y(ω; Y, 0) − f1y(ω0; Y, 0)f2y(ω; Y, 0)}dY

+
∫ z0

0
{f2z(ω0; Z)f1z(ω; Z) − f1z(ω0; Z)f2z(ω; Z)}dZ

)

(4.1)

readily emerges and similar formulae are found if one applies the operator H2y

or H2z.

Finally, we can insert more parallel sides (at x = x0 and y = y0) to create
a cuboid occupying 0 < x < x0, 0 < y < y0, z < z0. This results in six
faces on which the second order differential operators previously defined still
preserve the Dirichlet boundary conditions. There are 12 edges, and for each
operator extra terms, as described previously, are required to be included
for each operator in order to preserve the edge conditions. The subsequent
integrations then take place only along the lengths of the relevant edges. The
subsequent result is quite lengthy to reproduce, so only that based on the
operator H2x is reproduced here. The results for the operators H2y and H2z

are obtained in a completely analogous manner and are omitted here. The
embedding formula obtained from the H2x operator is
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Fig. 7. Cone formed by 2 quarter planes perpendicular to a sector of angle Θ.

f(ω; ω0)=
−π

6k3
0(ξ

2 − ξ2
0)

×
(
∫ y0

0
{f2y(ω0; 0, Y, z0)f1y(ω; 0, Y, z0) − f1y(ω0; 0, Y, z0)f2y(ω; 0, Y, z0)} dY

+
∫ y0

0
{f2y(ω0; x0, Y, z0)f1y(ω; x0, Y, z0) − f1y(ω0; x0, Y, z0)f2y(ω; x0, Y, z0)}dY

+
∫ y0

0
{f2y(ω0; 0, Y, 0)f1y(ω; 0, Y, 0)− f1y(ω0; 0, Y, 0)f2y(ω; 0, Y, 0)}dY

+
∫ y0

0
{f2y(ω0; x0, Y, 0)f1y(ω; x0, Y, 0) − f1y(ω0; x0, Y, 0)f2y(ω; x0, Y, 0)}dY

+
∫ z0

0
{f2z(ω0; 0, y0, Z)f1z(ω; 0, y0, Z) − f1z(ω0; 0, y0, Z)f2z(ω; 0, y0, Z)}dZ

+
∫ z0

0
{f2z(ω0; 0, 0, Z)f1z(ω; 0, 0, Z)− f1z(ω0; 0, 0, Z)f2z(ω; 0, 0, Z)}dZ

+
∫ z0

0
{f2z(ω0; x0, 0, Z)f1z(ω; x0, 0, Z) − f1z(ω0; x0, 0, Z)f2z(ω; x0, 0, Z)}dZ

+
∫ z0

0
{f2z(ω0; x0, y0, Z)f1z(ω; x0, y0, Z) − f1z(ω0; x0, y0, Z)f2z(ω; x0, y0, Z)}dZ

)

.

(4.2)

Thus, the integrations take place along the edges where the variable is y or z.

We now relax the requirement that all edges are mutually perpendicular and
move the edge Λ2 in the x–y plane away from the y-axis to make angle Θ with
the x-axis, as shown in figure 7. Thus the surface S3 is the same surface as in
the flat cone example of a previous section. It is now necessary to find a suitable
differential operator preserving the Dirichlet boundary condition on the faces
S1, S2 and S3, and then to determine a suitable combination of monopoles,
dipoles . . . to assemble along the edges to satisfy the edge conditions.
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It is simplest to choose an operator based on ∂/∂z and to proceed as before.
This preserves the Dirichlet boundary condition on surfaces S1 and S2, and
since the angle between each of these surfaces and S3 is still π/2, the operator
H2z based on T2(∂/∂z) preserves the Dirichlet boundary condition on all three
surfaces. On the edge Λ3 the operator H2z preserves the edge condition. On
the edge Λ1 the behaviour is that described previously for the octant case.
Similarly, since the angle between faces S1 and S3 is also π/2 it can be deduced
that the behaviour near the edge Λ2 has similar characteristics to that near
Λ1. Thus, the embedding formula is obtained in this case as

f(ω; ω0)=
π

6k3
0(ξ

2 + η2 − ξ2
0 − η2

0)

(
∫

∞

0
{f2x(ω0; X)f1x(ω; X) − f1x(ω0; X)f2x(ω; X)}dX

+
∫

∞

0
{f2s(ω0; S)f1s(ω; S) − f1s(ω0; S)f2s(ω; S)}dS

)

.

(4.3)

This is of the same form as (3.37), but with the variable Y for the integration
replaced by S, the variable measured along Λ2, and the Green’s functions f1x,
f2x, f1s and f2s are those for this cone shape.

Hence, we see that a combination of the ideas used in this article can be
utilised to consider scattering by quite general geometries. Moreover, it is not
unusual for there to be several embedding formulae and these can be used to
cross-validate the results. However, we sound a note of warning, unlike the
octant or cuboid discussed previously, for the cone in figure 7 other embed-
ding formulae cannot be obtained merely by interchanging the coordinate for
the differentiation in the operator, i.e. H2x and H2y or H2s are not in general
suitable for obtaining an embedding formula. To see this consider the opera-
tor H2x, it does not in general preserve the Dirichlet boundary condition on
the face S1. However, as Λ1 and Λ2 are both perpendicular to Λ3, the face S2

can be rotated around Λ3 onto the face S1. An operator based on this angle
may preserve the Dirichlet boundary condition on S1. However, for example, if
Θ = π/3 then even the operator H3x does not in general preserve the Dirichlet
boundary condition on S1 and is not a suitable operator. In addition to pre-
serving the Dirichlet boundary conditions on the faces a suitable operator for
obtaining an embedding formula is also required to produce edge behaviour
which can be expressed in terms of edge Green’s functions (monopoles and
higher orders). In this example the direction of the differentiation is neither
parallel to nor perpendicular to the edge Λ2 and is also not in the plane of
one of the faces there, hence considerably more analysis is needed to inves-
tigate the edge behaviour there and to determine suitable operators for this
geometry.

In conclusion it is therefore clear that scattering from many three-dimensional
geometries can be considered using the embedding formulae philosophy es-
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poused in [22] and subsequent articles. The embedding is far easier for pla-
nar structures, but can be generalised to right-angled geometries reasonably
straightforwardly. Even more general angled structures can be contemplated,
but the identification of the appropriate operator becomes more arduous. None
the less the fact that embedding can be utilised suggests that this route could
dramatically reduce the effort required to generate far-field directivity func-
tions for these geometries.
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A Appendix: Local behaviour of a monopole point or dipole source

near the edge of a wedge of rational angle

In the text we require edge Green’s functions and their behaviour in the near
field, to obtain this it is necessary to consider some source and wedge interac-
tion problems and the purpose of this appendix is to sketch the derivation of
the near field.

We treat the monopole source is detail. The Helmholtz wave equation is satis-
fied by fluid outside an infinitely long wedge whose angle is a rational multiple
of π, pπ/q, as shown in figure A.1. Cylindrical polar coordinates (r, θ, z), where
the z-axis coincides with the vertex edge, r is measured from the vertex, and
θ is measured from one of the wedge faces are used. A point source is located
in the fluid midway between the wedge faces, at radial distance r0 from the
vertex line. Thus, the governing equations for u are

(∇2+k2
0)u1(R;R0) = −4πδ(r−r0)δ(θ−θ0)δ(z−z0)/r0, 0 < θ < 2θ0, (A.1)

in which

θ0 = π(1 − p/2q), (A.2)

together with the Dirichlet boundary conditions on the wedge faces

u1(R;R0) = 0 at θ = 0 and θ = 2θ0. (A.3)

Utilising a Fourier series expansion in θ, a Hankel transform in radius, r, and a
Fourier transform in the axial direction z the following solution, for r ≥ r0 > 0,
emerges

u1(R;R0) =
−πi

θ0

∞
∑

n = 1

n odd

sin

(

nπθ

2θ0

)

sin
(

nπ

2

)
∫

∞

−∞

J nπ

2θ0

(γr0)H nπ

2θ0

(γr)eiα(z−z0)dα,

(A.4)

in which γ =
√

k2
0 − α2. As the source approaches the edge of the wedge r0 → 0

and the leading order term of u1(R;R0) results from the n = 1 term of the
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Fig. A.1. Wedge geometry
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summation:

u1(R;R0) ∼
−πi

θ0Γ
(

π
2θ0

+ 1
)

(

r0

2

)
π

2θ0

sin

(

πθ

2θ0

)

∫

∞

−∞

γ
π

2θ0 H π

2θ0

(γr)eiα(z−z0)dα.

(A.5)

It is frequently useful to consider a source whose strength varies as r
−π/2θ0

0 and
then to use the limit as r0 → 0. This limiting case is obtained by omitting the
r

π/2θ0

0 factor above and replacing the ‘∼’ with ‘=’:

u1lim(R; z0) =
−πi

θ0Γ
(

nπ
2θ0

+ 1
)

(

1

2

)

π

2θ0

sin

(

πθ

2θ0

)

∫

∞

−∞

γ
π

2θ0 H π

2θ0

(γr)eiα(z−z0)dα.

(A.6)

In this exposition the r
π/2θ0

0 factor will be retained, but with the understanding
that the limit procedure will be subsequently applied. Next, the near field
behaviour of equation (A.6) as r → 0 is examined, using known properties of
Hankel functions, and

u1(R;R0) ∼
−Γ

(

π
2θ0

)

θ0Γ
(

π
2θ0

+ 1
)

(

r0

r

)
π

2θ0

sin

(

πθ

2θ0

)

∫

∞

−∞

{

1 + Aγ2r2 + . . .
}

eiα(z−z0)dα.

(A.7)
as r → 0. Inverting the Fourier transforms using delta functions and their
derivatives yields the near field behaviour of u1(R;R0) as

u1(R;R0) ∼ −4
(

r0

r

)
π

2θ0

sin

(

πθ

2θ0

)

{(

1 + Ak2
0r

2 + . . .
)

δ(z − z0) ,

+
(

Ar2 + . . .
)

δ′′(z − z0) + . . .
}

. (A.8)

This form of the solution is particularly useful for evaluating integrals with
respect to z0, for example, as r → 0

∫

∞

0
h(Z)u1(r, θ, z; r0, θ0, Z)dZ ∼ 4

(

r0

r

)
π

2θ0

sin

(

πθ

2θ0

)

{(

1 + Ak2
0r

2 + . . .
)

h(z) +
(

Ar2 + . . .
)

h′′(z) + . . .
}

. (A.9)

For the dipole, the inhomogeneous Helmholtz equation (A.1) is replaced by

(∇2+k2
0)u2(R;R0) = −4πδ(r−r0)δ

′(θ−θ0)δ(z−z0)/r0, 0 < θ < 2θ0, (A.10)

and following through the analysis above gives the near field for the dipole as

u2(R;R0) ∼
−2π

θ0

(

r0

r

)
π

θ0

sin

(

πθ

θ0

)

{(

1 + Bk2
0r

2 + . . .
)

δ(z − z0) +
(

Br2 + . . .
)

δ′′(z − z0) + . . .
}

. (A.11)
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Hence the near field behaviour of the required integrals with respect to z0 are
obtained as

∫

∞

0
h(Z)u2(r, θ, z; r0, θ0, Z)dZ ∼ 2π

θ0

(

r0

r

)
π

θ0

sin

(

πθ

θ0

)

{(

1 + Bk2
0r

2 + . . .
)

h(z) +
(

Br2 + . . .
)

h′′(z) + . . .
}

, as r → 0. (A.12)
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