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Abstract

A 2D problem of propagation of a plane wave on a branched surface
with a periodic set of branch points is studied. The periodic system
of branch points plays the role of a diffraction grating. A period of
the grating is composed of two branch points. The incident wave
falls at a grazing angle with respect to the edge of the grating. The
consideration is held in the parabolic approximation. The axis of
propagation coincides with the edge of the grating.

Edge Green’s functions of the problem are introduced. They are
wave fields generated by point sources located near the branch points.
An embedding formula is proven representing the unknown scattering
coefficients of in terms of the directivities of the edge Green’s func-
tions. A spectral equation is derived for the directivities of the edge
Green’s functions. This equation is an ordinary differential equation
whose coefficient is unknown. An OE-equation is proposed to find this
coefficient.

1 Problem formulation for Helmholtz equa-

tion on a branched surface

It was shown in [1] that estimation of Q-factor of 2D rectangular resonators
with windows demands solving of a family of the so-called Weinstein-class
problems. They are 2D problems of diffraction of a plane wave by an infinite
grating composed of branch points on a branched surface. These branch
points are arranged in a line. Branched surfaces naturally emerge in resonator

1



problems when the reflection principle is applied. Wave are assumed to have
wavelength short comparatively to the distances between the branch points,
and the incidence angle is assumed to be small (grazing).

The following problem is considered here. The branched surface consists
of the “main” sheet and an infinite number of “auxiliary” sheets. The main
sheet is the (x, y)-plane cut along the half-lines y < 0, x = xn,

xn =

{
(a+ b)l, n = 2l
(a+ b)l + a, n = 2l + 1

l ∈ Z,

where a and b are the geometrical parameters of the problem. Auxiliary
sheets are numbered by index n. Each of them is cut along the half-line
y < 0, x = xn. The branched surface is a result of attaching of the auxiliary
sheets to the main sheet. The shores of the cut of the auxiliary sheet number
n are attached to the shores of the cut of the main sheet going from the point
(xn, 0). The right shore of the main sheet is attached to the left shore of the
auxiliary sheet, and vice versa. Thus, the points (xn, 0) become the branch
points of the surface. Each branch point has the second order.

The grating composed of the branch points has period equal to a+b along
the x-axis. The sketch of the surface is shown in Fig. 1.

The Helmholtz equation is valid on the branched surface:

∆uH + k2uH = 0. (1)

The incident wave goes from infinity along the main sheet:

uHin = exp{ik(x cos θin − y sin θin)}. (2)

The incidence angle θin is small.
Time dependence of uH is assumed to have form of e−iωt, where ω is the

circular frequency. The ratio ω/k is the wave velocity of the medium.
The total field should be continuous on the whole surface and obey

Meixner’s conditions (vertex conditions) near the branch points. The scat-
tered wave should obey the radiation condition at infinity on each sheet.
Mathematically, problem formulation is similar to that of, say, problem with
a single branch point and two sheets, i.e. the classical Sommerfeld problem.

The presence of auxiliary sheets leads to the fact that the half-lines y < 0,
x = xn on the main sheet can be considered as ideally absorbing screens.

The problem formulated here, being considered in terms of [1], corre-
sponds for example to a high-frequency mode in the resonator shown in
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Figure 1: Structure of the branched surface

Fig. 2. The resonator is formed by a thin hard wall in the unbounded space.
The wall has shape of a square with an angle taken off. The mode is formed
by a a family of parallel rays. Parameter a+ b in this case is the total length
of the ray 2

√
2D. Parameter a is equal to

√
d.

2 Formulation of the problem in the parabolic

approximation

The small value of θin and the small value of the wavelength comparatively
to a and b enable us to consider the problem in the parabolic approximation
of diffraction theory. In our case this approximation means that we neglect
the cylindrical edge waves diffracted at large angles, taking into account only
the field scattered forward and having penumbral structure.

The positive x-direction is chosen as the main propagation direction, i.e.
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Figure 2: Resonator mode corresponding to the considered problem

the field is represented as

uH = exp{ikx}u(x, y). (3)

Function u depends on x slowly comparatively to uH. Substituting (3) into
(1) and neglecting the second derivative of u with respect to x (see [2]) obtain
that u obeys approximately the parabolic equation(

∂2
y + 2ki∂x

)
u = 0. (4)

The main reason to study the parabolic equation instead of the Helmholtz
one is simplification of description of wave processes. Namely, in any domain
x′ < x < x′′ not containing branch points the values u(x′, y) can be considered
as the initial data and the field in the whole domain can be computed by the
formula

u(x, y) =

∞∫
−∞

u(x′, y′)g(x− x′, y − y′)dy′, (5)

where g is the Green’s function of the parabolic equation in unbounded plane:

g(x, y) =

{
k1/2(2πx)−1/2 exp {iky2/(2x)− iπ/4} , x > 0,
0, x < 0.

(6)

As a consequence, the field on an auxiliary sheet is identically equal to zero
everywhere to the left of the (only) branch point located on this sheet. This
happens because due to the problem formulation there is no incident field on
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the auxiliary sheets and the scattered wave does not propagate from right to
left in the parabolic approximation.

The parabolic equation can be considered on the branched surface built
above, however it is possible to simplify the consideration by utilizing the
absence of waves traveling from right to left. Consider the main sheet of the
branched surface cut along the half-lines y < 0, x = xn. Due to continuity
of the field on the branched surface the field on the right shore of some cut
coincides with the field on the left shore of a cut made on corresponding
auxiliary sheet, i.e. this field is equal to zero:

u(xn + 0, y < 0) = 0. (7)

It is not necessary to formulate boundary conditions on left shores of the cuts
on the main sheet, since the field is smoothly continued from these shores
onto corresponding auxiliary sheets.

Below we consider field u only on the main sheet cut along the lines y < 0,
x = xn on which the conditions (7) are fulfilled.

The total field u is a sum of the incident wave uin and the scattered field
usc

u = uin + usc. (8)

The incident field in the parabolic approximation has form of

uin(x, y) = exp
{
−ikxθ2in/2− ikθiny

}
, (9)

where θin is the incident angle. This form guarantees that the incident wave
obeys (4). The total field is continuous everywhere except the cuts. The
scattered field obeys the boundary conditions following from (7):

usc(xm + 0, y) = −uin(xm, y), y < 0. (10)

Problem formulation should be supplied with the vertex conditions at the
end points of the cuts and with the radiation condition. The vertex conditions
state that the total field is limited near the end points. These conditions
guarantee the absence of sources near the end points. Radiation condition
states that there are no wave components coming from large positive or
negative y except the incident wave. This condition will be taken into account
when respective Fourier components will be considered.

Note that the validity of the parabolic approximation for the branched
surface is violated near the branch points (say, several wavelengths from each
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branch point). Behavior of a solution of the parabolic equation near a branch
point is rather complicated and it is very different from that of a solution
of the Helmholtz equation. To see this, study function g as an example or
study solution (78) from Appendix. For x < xm the field is continuous and
smooth. The field at the point (xm, 0) is undetermined, and for x > xm it
oscillates rapidly near the branch point. The end values u(xm, 0) play a huge
role in what follows. In all cases we have in mind the values correctly defined
by

u(xm − 0, 0) ≡ lim
ϵ→0

u(xm − ϵ, 0).

The formulation of the problem looks a bit strange because boundary
conditions are imposed only on right shores of the cuts. We demonstrate in
Appendix that in the simplest case of a single branch point such formulation
leads to correct results.

A simpler problem belonging to the same class emerges if the grating has
a single cut per period or if a = b in our formulation. This problem was
solved by L. A. Weinstein [3]. The most valuable and surprising result is
that the coefficient of scattering into the main diffraction order tends to −1
as the incidence angle θin tends to zero. The solution was built by using the
Wiener–Hopf method [4]. The problem considered here also can be treated by
the Wiener–Hopf method, however in this case the problem becomes reduced
to a matrix factorization problem whose solution is unknown.

The author proposed an alternative (with respect to Wiener–Hopf) method
for the classical Weinstein’s problem [5]. The method is based on the embed-
ding formula and the spectral equation. In the current paper we generalize
the proposed method to a new problem.

We should mention the papers [6, 7, 8], where the Weinstein–class prob-
lems are reduced to integral equations of the Wiener–Hopf type, and the
papers [9, 10], where important technical issues related to the Weinstein–
class problems are discussed.

3 Field representation according to the Flo-

quet theory

The problem considered here has geometry periodic along the x-axis. Thus,
it is possible to apply the Floquet theory. When a period is added to the
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x-coordinate, the incident field is multiplied by the factor

γ ≡ uin(x+ a+ b)

uin(x)
= exp

{
−ik(a+ b) θ2in/2

}
. (11)

Obviously, the scattered field possesses the same property, i.e. it is multiplied
by the same factor when a period is added to the x-coordinate.

The scattered field in the upper half-plane can be represented as a linear
combination of the waves traveling in the positive direction of y or decaying
there. Obviously, only waves obeying the Floquet property can participate
in this linear combination. Thus the scattered field can be represented in the
domain y > 0 as follows:

usc =
∑
n

Rn exp
{
−ikxθ2n/2 + ik θny

}
, (12)

where θn is the propagation angle of the n-th mode:

θn =

(
θ2in +

4πn

k(a+ b)

)1/2

, n ∈ Z. (13)

Note that the numbering of the modes is chosen such that

θ0 = θin. (14)

The branch of the square root in (13) is chosen in such a way that its
value is real positive or imaginary positive. The first case corresponds to
propagating waves (i.e. to the diffraction orders), and the second case corre-
sponds to decaying components of the near field, i.e. to the inhomogeneous
waves.

The main task of this paper is finding the scattering coefficients Rn in
representation (12). We expect that for small θin all coefficients except R0

are small, so the reflection is close to the mirror one.

4 Edge Green’s functions and their directiv-

ities

Define edge Green’s functions vm(x, y) as follows. Consider the plane (x, y)
with the cuts, i.e. consider the main sheet of the branched surface shown
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in Fig. 1. Functions vm obey the following inhomogeneous parabolic equa-
tions: (

∂x +
1

2ik
∂2
y

)
vm = δ(x− xm − 0)δ(y). (15)

Notation x − xm − 0 means that for positive ϵ small enough we look for a
solution of the problem having a source at the point xm+ ϵ (i.e. the source is
located to the right of the point xm), and after that we take the limit ϵ → 0.
For any non-zero ϵ the solution should obey boundary condition (7), vertex
conditions and the radiation condition.

It is easy to construct functions vm explicitly. In the domain xm < x <
xm+1 function vm is represented as

vm(x, y) = g(x− xm, y). (16)

This follows from the fact that function g defined in (6) obeys the following
inhomogeneous parabolic equation:(

∂x +
1

2ik
∂2
y

)
g = δ(x)δ(y).

The inhomogeneous equation with a singular right-hand side is understood
in a weak sense. The cut located at x = xm does not affect the field of the
source located at x = xm + ϵ, thus the limiting procedure ϵ → 0 causes no
difficulties.

Then, according to (5) and boundary condition (7), the field in the domain
xm+1 < x < xm+2 can be represented as

vm(x, y) =

∫ ∞

0

g(xm+1 − xm, y
′)g(x− xm+1, y − y′)dy′, (17)

the field in the domain xm+2 < x < xm+3 can be represented as

vm(x, y) =∫∫ ∞

0

g(xm+1−xm, y
′)g(xm+2−xm+1, y

′′−y′)g(x−xm+2, y−y′′)dy′dy′′, (18)

etc. The formulae are explicit on each step, however the result is not practi-
cal, since the formulae contain nested integrals.

Obviously,
vm(x, y) = 0 x < xm.
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Due to the periodicity, all functions vm can be obtained from v0 and v1
by x-coordinate shifts:

vm+2(x, y) = vm(x− (a+ b), y).

Let us make an important note. The procedure of placing a point source
near a branch point in the parabolic equation case is very different from the
Helmholtz case. It is not true that function vm is an asymptotic representa-
tion of the Helmholtz field produced by a unit strength source located near
the branch point. In classical works by Leontovich and Fok dedicated to the
parabolic equation it is mentioned that the parabolic approximation becomes
invalid near the source. Thus, a correct procedure is matching of the far–field
asymptotics of the Green’s function of the Helmholtz equation with g. This
is not what is done in this paper. Instead, function vm is considered as an
auxiliary function having sense only in the parabolic approximation.

The directivities Vm(θ) of the edge Green’s functions vm(x, y) are intro-
duced as the coefficients in the following asymptotic representations:

vm(x, y) = g(x− xm, y)Vm

(
y

x− xm

)
+ o(x−1/2), (19)

where the values y and x − xm are assumed to be asymptotically large,
while their ratio remains constant. This representation is constructed by
analogy with the Helmholtz equation case. The main term of the field vm is
represented as the Green’s function g multiplied by a directivity depending
only on the scattering angle. Obviously, directivities Vm(θ) are defined only
for θ > 0. Moreover, asymptotics (19) can be uniform only for θ bigger than
some non-zero positive value.

Introduce also a directivity of some arbitrary parabolic field w(x, y) with
respect to the point X as coefficient WX(θ) in the representation

w(x, y) = g(x−X, y)WX

(
y

x−X

)
+ o(x−1/2),

if such representation is valid for the field. Transformation formula for the
directivities of the same field computed with respect to different points is as
follows:

WX′
(θ) = exp{ik(X −X ′)θ2/2}WX(θ). (20)

Due to periodicity,
Vm+2(θ) = Vm(θ). (21)
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5 Some properties of the fields and their di-

rectivities in the parabolic approximation

As it is known, directivity of a field in the Helmholtz equation case is ex-
pressed through the Fourier transformation of the field taken on the scatterers
of some other surfaces. The key point for building these representations is
the Green’s formula. We need similar representations for the parabolic equa-
tion, and the first step is constructing the Green’s formula for the parabolic
case.

Theorem 1 Let functions v(x, y) and w(x, y) obey the following inhomoge-
neous equations in some domain Ω:(

∂x +
1

2ik
∂2
y

)
v = f(x, y),

(
−∂x +

1

2ik
∂2
y

)
w = h(x, y). (22)

Then the following equality is valid∫
∂Ω

[(v · n)w − (w · n)v]dl = 2ik

∫
Ω

[fw − hv]ds. (23)

where n is the outward unit normal to the boundary ∂Ω, and vector flows v,
w are given by

v =

(
ikv
∂yv

)
, w =

(
−ikw
∂yw

)
, (24)

One can prove the theorem by applying Gauss–Ostrogradsky theorem.
Let us formulate several propositions related to directivities of wave fields

and for the coefficients Rn.

Proposition 1 Coefficients Rn from (12) are expressed by the formula

Rn =
exp{−ikθny∗}

a+ b

a+b∫
0

usc(x, y∗) exp

{
i
kθ2n
2

x

}
dx (25)

for any y∗ > 0.

The proof is elementary. Expand the (periodic) function

usc(x, y∗) exp

{
i
kθ20
2

x

}
as Fourier series.
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Proposition 2 For large positive X, Y

vm(X, Y ) =

√
k

2πX
exp

{
i
kY 2

2X
− i

π

4

}
×

Y

X

∞∫
−∞

vm(x, y∗) exp

{
ik

(
1

2

Y 2

X2
x− Y

X
y∗

)}
dx+ o(X−1/2) (26)

for any fixed y∗ > 0.

To prove this statement use (23) substituting vm as v, and

w(x, y) = g(X − x, y − Y )

as w. Domain Ω is the set of points (x, y) with y > y∗.
For large X,Y and small x, y∗ we can use the approximation

w(x, y∗) ≈
√

k

2πX
exp

{
i
kY 2

2X
− i

π

4

}
exp

{
ik

(
1

2

Y 2

X2
x− Y

X
y∗

)}
.

The possibility to consider x and y∗ as small (comparatively to X and Y )
follows from the fact that the edge Green’s functions decay as x → ∞ and
are equal to zero for large negative x.

For using (23) it is necessary to transform the combination

∞∫
−∞

∂yvm(x, y∗) exp

{
ik
1

2

Y 2

X2
x

}
dx.

Take into account the radiation condition, i.e. note that in the upper half-
plane the field is represented as a linear combination of outgoing and decaying
waves. Fourier transformation expands the field vm in plane waves, and it
becomes possible to express the vertical derivative for each plane wave:

∞∫
−∞

∂yvm(x, y∗) exp

{
ik

2

Y 2

X2
x

}
dx = ik

Y

X

∞∫
−∞

vm(x, y∗) exp

{
ik

2

Y 2

X2
x

}
dx.

Substitution of these representations into (23) gives (26).
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Proposition 3 Directivities Vm(θ) can be computed by the formula

Vm(θ) = exp

{
−i

kθ2

2
xm

}
θ

∞∫
−∞

vm(x, y∗) exp

{
ik

(
θ2

2
x− θy∗

)}
dx (27)

for any y∗ > 0.

Expression (27) follows from (26) after taking into account that

g(X, Y ) ≈ exp

{
−ik

2

Y 2

X2
xm

}
g(X − xm, Y )

and

θ =
Y

X − xm

≈ Y

X
.

Proposition 4 The following representations are valid for Vm(θ):

Vm(θ) = 1−
∞∑

n=m+1

exp

{
ik
θ2

2
(xn − xm)

} 0∫
−∞

vm(xn − 0, y)e−ikθydy (28)

This proposition can be proven by applying (23) to functions vm and

w = exp
{
ik
(
θ2x/2− θy

)}
with θ > 0 in the domain shown in Fig. 3. Lower horizontal segments of
the boundary correspond to y = −L for large L. The radiation condition
guarantee that the integral over these segments tends to zero as L → ∞.

Denote by cm the edge values of the total field u(x, y) (for the plane wave
incidence) multiplied by a coefficient for convenience:

cm ≡ u(xm − 0, 0) exp
{
ikxmθ

2
in/2

}
. (29)

Due to Floquet condition,
cn+2 = cn,

thus, to determine all cm it is sufficient to find only c0 and c1.

Proposition 5 The following representation is valid for c0,1

c1−m = Vm(θin). (30)
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Introduce v(x, y;x′, y′) as the Green’s function of the following problem.
v should obey the inhomogeneous parabolic equation(

∂x +
1

2ik
∂2
y

)
v = δ(x− x′)δ(y − y′)

on a plane with the cuts x = xm, y < 0. It should obey boundary conditions
(7) on the right shores of the cuts. Moreover, the function (with respect to
variables x,y) should obey the radiation condition and vertex conditions.

Obviously, the edge Green’s functions can be considered as partial cases
of v:

vm(x, y) = v(x, y;xm + 0, 0).

Directivities Vm can be defined as

Vm(θ) = lim
x′→∞

vm(x
′ + xm, x

′θ)

g(x′, x′θ)
. (31)

Also it is obvious that the total field with plane incident wave (at least
in some domain containing the origin) can be considered as a limiting case
of the Green’s function with a remote source:

u(x, y) = lim
x′→∞

v(x, y;−x′, x′θin)

g(x′,−x′θin)
(32)

and, therefore

cm = exp{ikxmθ
2
in/2} lim

x′→∞

v(xm, y;−x′, x′θin)

g(x′,−x′θin)
. (33)
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Note that the function

w(x, y) = v(a− x, y; a− x′′, y′′)

(again, considered as a function of x, y) obeys the second equation (22) with
the right-hand side

h(x, y) = δ(x− x′′, y − y′′)

and boundary conditions w = 0 set on the left shores of the cuts x = xm,
y < 0. Apply (23) to the functions v(x, y;x′, y′) and v(a − x, y; a − x′′, y′′).
Take the whole cut plane as the domain Ω. The integral over the shores of
the cuts is equal to zero due to the boundary conditions. The integral over
the remote horizontal segments tends to zero due to the radiation condition.
Thus, we get

v(x′′, y′′;x′, y′) = v(a− x′, y′; a− x′′, y′′)

and therefore
v(x1−m, 0;−x′, y′) = vm(x

′ + a, y′).

Substitute the last equation into (31) and (33), and take the limit x′ → ∞,
y′ = θinx

′. As the result, get (30).

6 Embedding formula

Prove one more proposition.

Proposition 6 Let u(x, y) be a function obeying a homogeneous parabolic
equation (4) everywhere except the cuts and boundary conditions (7) on the
right shores of the cuts, and limited near the end points of the cuts. Then
function w(x, y) = ∂yu obeys the inhomogeneous parabolic equation(

∂x +
1

2ik
∂2
y

)
w =

∞∑
m=−∞

u(xm − 0, 0)δ(x− xm − 0)δ(y) (34)

and boundary conditions (7).

Everywhere except the vicinity of the cuts w obeys the homogeneous
parabolic equation since the operator ∂y commutes with the parabolic op-
erator. The boundary conditions can be checked directly. The proposition
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above states that the operator ∂y generates monopole sources at the ends of
the cuts. Let us check this.

Consider a narrow strip xm < x < xm +∆, −∞ < y < ∞. According to
(5) the field in this strip can be written as

u(x, y) = lim
ϵ→0

∞∫
ϵ

u(xm, y
′)g(x− xm, y − y′)dy′. (35)

The integration is held over the positive half-axis, since the field u(xm+0, y′)
on the negative half-axis is equal to zero due to boundary condition (7). The
integral converges near the end point y = 0 due to the vertex condition.
Apply the operator ∂y and integrate by parts:

w(x, y) = lim
ϵ→0

∞∫
ϵ

w(xm, y
′)g(x− xm, y − y′)dy′+

lim
ϵ→0

u(xm, ϵ)g(x− xm, y − ϵ).

Due to (5), the value of w(xm, ϵ) in the first term tends to a finite limit as
ϵ → 0 (this limit is equal to w(xm − 0, 0)). In the second term u(xm,+0) =
u(xm − 0, 0). Thus,

w(x, y) =

∞∫
0

w(xm − 0, y′)g(x− xm, y − y′)dy′ + u(xm − 0, 0)g(x− xm, y).

The first term in the right-hand side corresponds a field without sources, and
the second term corresponds to the field of a monopole source located at the
point (xm + 0, 0) and having amplitude u(xm − 0, 0). A similar procedure
can be performed with each other vertex.

The embedding formula links the scattering coefficients Rn with directiv-
ities of the edge Green’s functions. This formula is given by the following
theorem.

Theorem 2

Rm =
1

ik(a+ b)θm(θm + θin)

1∑
n=0

exp

{
2πimxn

a+ b

}
V1−n(θin)Vn(θm). (36)
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Proof. Apply the operator

H[u](x, y) = (∂y + ikθin)u.

to the field u(x, y) (i.e. to the solution of the problem with plane incident
wave). This operator nullifies the incident wave, keeps valid the parabolic
equation in the internal points of the domain and keeps valid the boundary
conditions. Obviously, the field H[u] obeys the radiation condition. Accord-
ing to Proposition 6 the field w has sources located at the edges (xm, 0) (i.e.
at the end points of the scatterer). The amplitudes of these sources are equal
to u(xm − 0, 0). According to uniqueness of the solution of the diffraction
problem,

H[u](x, y) =
∞∑

n=−∞

u(xn − 0, 0)vn(x, y) =
∞∑

n=−∞

exp{−ikxnθ
2
in/2}cnvn(x, y).

(37)
Multiply (37) by

exp{ikxθ2m/2− ikθmy}.

Fix an arbitrary positive value y = y∗ and integrate (37) along the segment
0 < x < (a + b), y = y∗. Take into account that H standing in the left
nullifies the incident wave, and it is possible to compute the y-derivative for
each Fourier component of the scattered field. Use (25) to transform the
right-hand side:

ik(θm + θin)(a+ b)Rm =

∞∑
n=−∞

cn exp{−ikxnθ
2
in/2}

a+b∫
0

vn(x, y∗) exp{ikxθ2m/2− ikθmy∗}dx (38)

Due to periodicty

vn(x, y∗)cn exp{ik(xθ2m − xnθ
2
in)/2} = vn′(x′, y∗)cn′ exp{ik(x′θ2m − xn′θ2in)/2},

x′ = x+ (a+ b)l, n′ = n+ 2l, l ∈ Z.

The last formula enables one to replace summation and integration along a
segment by integration along a line:

ik(θm + θin)(a+ b)Rm =
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1∑
n=0

cn exp{−ikxnθ
2
in/2}

∞∫
−∞

vn(x, y∗) exp{ikxθ2m/2− ikθmy∗}dx. (39)

Applying formulae (27) and (30), obtain

ik(θm + θin)(a+ b)Rm =
1∑

n=0

exp

{
ikxn

θ2m − θ2in
2

}
V1−n(θin)Vn(θm)

θm
. (40)

Finally, applying (13) obtain (36). �
Thus, scattering coefficients Rn become expressed through the directivi-

ties of the edge Green’s functions. Below our efforts are focused on compu-
tation of these directivities.

7 Spectral equation

Directivities Vm(θ) can be computed by solving an ordinary differential equa-
tion (ODE) called the spectral equation. To derive the spectral equation
apply the operator

Kn = (x− xn)∂y − iky

to the edge Green’s function vn(x, y). Note that operator Kn commutes with
the parabolic operator 2ik∂x+∂2

y , thus Kn[vn] obeys the parabolic equation in
all internal points of the cut plane. Operator Kn is analogous to the operator
of differentiation with respect to the angle of rotation about the point (xn, 0)
in the Helmholtz case. Further, Kn[vn] obeys boundary conditions (7) and
the radiation condition. Finally,

Kn[g(x− xn, y)] ≡ 0.

At the same time, vn(x, y) = g(x − xn, y) for xn < x < xn+1. Thus the
operator Kn nullifies the source of the field vn. Analogously to Proposition 6
one can show that the function

w(x, y) = Kn[vn](x, y)

obeys the inhomogeneous parabolic equation(
∂x +

1

2ik
∂2
y

)
w =

∞∑
m=n+1

(xm − xn) vn(xm − 0, 0) δ(x− xm − 0) δ(y).

17



Due to uniqueness of the solution of the diffraction problem,

Kn[vn](x, y) =
∞∑

m=n+1

(xm − xn)vn(xm − 0, 0)vm(x, y). (41)

Consider directivities of the fields in (41). It is easy to check that operator Kn

acts on a directivity calculated with respect to the point xn as differentiation
with respect to θ. Taking into account (20) obtain

∂θVn(θ) =
∞∑

m=n+1

(xm − xn)vn(xm − 0, 0) exp{ik(xm − xn)θ
2/2}Vm(θ). (42)

Note that Vm(θ) = Vm+2(θ). Introduce a matrix of coefficients

C(θ) =

(
C0,0 C0,1

C1,0 C1,1

)
, (43)

where

C0,0(θ) =
∞∑
l=1

(x2l − x0)v0(x2l − 0, 0) exp{ik(x2l − x0)θ
2/2}, (44)

C1,0(θ) =
∞∑
l=0

(x2l+1 − x0)v0(x2l+1 − 0, 0) exp{ik(x2l+1 − x0)θ
2/2}, (45)

C0,1(θ) =
∞∑
l=1

(x2l − x1)v1(x2l − 0, 0) exp{ik(x2l − x1)θ
2/2}, (46)

C1,1(θ) =
∞∑
l=1

(x2l+1 − x1)v1(x2l+1 − 0, 0) exp{ik(x2l+1 − x1)θ
2/2}. (47)

Using the new notation obtain that the following theorem is valid:

Theorem 3 Directivities V0(θ), V1(θ) obtain the following ordinary differ-
ential equation

d

dθ
(V0, V1) = (V0, V1) · C(θ), (48)

where C is given by (43)–(47).

This equation will be called the spectral equation. The coefficient of this
equation include unknown values v0(xm − 0, 0), v1(xm − 0, 0) (edge values of
the edge Green’s functions). Computation of the coefficient and the initial
condition of the spectral equation is the subject of next two sections.
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8 More general form of the spectral equation

Introduce the notation

Ṽm,n(θ) = − exp{ik(xm−xn)θ
2/2}

0∫
−∞

vn(xm−0, y) exp{−ikθy}dy, m > n.

(49)
Define also

Ṽn,n(θ) = 1, Ṽm,n(θ) = 0, m < n. (50)

Return to (41). Multiply both sides by

− exp{ik(xm − xn)θ
2/2− ikθy}

and integrate along the line x = xm − 0, −∞ < y < 0. As the result, obtain

∂θṼm,n(θ) =
m∑

l=n+1

(xl − xn)vn(xl − 0, 0) exp{ik(xl − xn)θ
2/2}Ṽm,l(θ). (51)

Introduce the values

al,n(θ) = (xl − xn)vn(xl − 0, 0) exp{ik(xl − xn)θ
2/2}.

Equation (51) can be rewritten in the form

∂θṼm,n(θ) =
m∑

l=n+1

Ṽm,l(θ)al,n(θ). (52)

Equations (52) form an infinite system of equations for all integer m and n.
Note that “unknown functions” Ṽm,n and “coefficients” am,n obey the peri-
odicity condition

Ṽm,n(θ) = Ṽm+2,n+2(θ), am,n(θ) = am+2,n+2(θ)

Moreover, the right-hand side (52) has a convolution type. These two circum-
stances enable one to apply Fourier transform to the system (52). Namely,
for any arbitrary p with Im[p] ≥ 0 multiply (52) by exp{ikp(xm − xn)}, fix
n = 0 or 1 and sum over all m. In the right-hand side use the identity

exp{ikp(xm − xn)} = exp{ikp(xm − xl)} exp{ikp(xl − xn)}.
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As the result, obtain

∂θ

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)
=

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)(
ā0,0 ā0,1
ā1,0 ā1,1

)
, (53)

where the following values are introduced:

V̄0,0(θ, p) =
∞∑
l=0

Ṽ2l,0(θ) exp{ik(x2l − x0)p}, (54)

V̄1,0(θ, p) =
∞∑
l=0

Ṽ2l+1,0(θ) exp{ik(x2l+1 − x0)p}, (55)

V̄0,1(θ, p) =
∞∑
l=1

Ṽ2l,1(θ) exp{ik(x2l − x1)p}, (56)

V̄1,1(θ, p) =
∞∑
l=0

Ṽ2l+1,1(θ) exp{ik(x2l+1 − x1)p}, (57)

and

ā0,0(θ, p) =
∞∑
l=1

a2l,0(θ) exp{ik(x2l − x0)p}, (58)

ā1,0(θ, p) =
∞∑
l=0

a2l+1,0(θ) exp{ik(x2l+1 − x0)p}, (59)

ā0,1(θ, p) =
∞∑
l=1

a2l,1(θ) exp{ik(x2l − x1)p}, (60)

ā1,1(θ, p) =
∞∑
l=1

a2l+1,1(θ) exp{ik(x2l+1 − x1)p}, (61)

Note that according to (28),

V0(θ) = V̄0,0(θ, 0) + V̄1,0(θ, 0), V1(θ) = V̄0,1(θ, 0) + V̄1,1(θ, 0). (62)

Comparing (58)–(61) with (44)–(47), obtain(
ā0,0 ā0,1
ā1,0 ā1,1

)
(θ, p) = C(

√
θ2 + 2p) (63)
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As the result obtain that the values Ṽα,β(θ, p) obey an ODE of the form

∂θ

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)
=

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)
· C(

√
θ2 + 2p). (64)

This is an auxiliary equation for building an OE-equation. The OE-equation
is necessary for finding the coefficient of the spectral equation C(θ). The
spectral equation (48) can be obtained from (64) by taking p = 0.

9 OE–equation

Consider the equation
∂θX(θ) = X(θ) · A(θ), (65)

for an unknown matrix X of dimension 2× 2. Matrix A(θ) is the coefficient
of this equation. This equation is solved along a contour γ in the complex
plane of variable θ. Let t1 and t2 be the starting point and the ending point
of this contour. Let the initial condition

X(t1) = I,

be set at the starting point of the contour. Here I is the unit 2 × 2 matrix.
Introduce the notation

OEγ[A(θ)] ≡ X(t2). (66)

The notation OE goes from the concept of the ordered exponential widely
accepted in quantum mechanics.

Theorem 4 Function C(θ) obeys the following equation

OEγ[C(
√

θ2 + 2p)] = T(p), Im[p] > 0, (67)

where

T(p) =

(
1 − exp{ikbp}

− exp{ikap} 1

)
, (68)

contour γ is the real axis passed in the negative direction (i.e. from +∞ to
−∞). In the left-hand side of (67) variable θ is taken as an independent
variable and p is taken as a parameter.
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Equation (67) will be called the OE–equation.
To prove this theorem it is sufficient to show that

lim
θ→∞

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)
(θ, p) = I, (69)

lim
θ→−∞

(
V̄0,0 V̄0,1

V̄1,0 V̄1,1

)
(θ, p) = T(p). (70)

Note that Ṽn,n = 1. Direct computations based on (16) show that

lim
θ→−∞

Ṽn+1,n(θ) = −1, lim
θ→∞

Ṽn+1,n(θ) = 0.

The terms Ṽn,n and Ṽn+1,n tend to limiting values (69) and (70) provided
that all other terms (i.e. Ṽm,n(θ), m > n+ 1) tend to zero as |θ| → 0. Let us
prove the last statement.

Let us show that L2 norm of the terms Ṽm,n(θ), m > n + 1 is finite and
grows with m no faster than algebraically. This will be enough to prove our
statement for functions Ṽm,n(θ) smooth enough and for Im[p] > 0.

Consider as an example the terms Ṽm,0(θ), m = 2, 3, . . .. According to
Parseval’s theorem, instead of norm of Ṽm,0(θ) one can consider the L2-norm
of the functions v0(xm − 0, y), y < 0. Consider the propagation operators

Πa[w](y) =

∞∫
−∞

w(y′)g(a, y − y′)dy′, Πb[w](y) =

∞∫
−∞

w(y′)g(b, y − y′)dy′,

(71)
and the projectors

P+[w](y) = w(y)h(y), P−[w](y) = w(y)h(−y), (72)

h(y) =

{
1, y ≥ 0,
0, y < 0.

The key statement of the proof is that the operators Πa,Πb maintain the
L2-norm. This can be checked by studying these operators in the Fourier
representation. Projectors P+ and P− do not increase the norm.

In the operator notation the following identities can be written

v0(x1 − 0, y) = Πa ◦ δ(y),
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v0(x2 − 0, y) = Πb ◦ P+ ◦ Πa ◦ δ(y),
v0(x3 − 0, y) = Πa ◦ P+ ◦ Πb ◦ P+ ◦ Πa ◦ δ(y),

v0(x2l+1 − 0, y) = Πa ◦ (P+ ◦ Πb ◦ P+ ◦ Πa)
l ◦ δ(y),

v0(x2l+2 − 0, y) = Πb ◦ P+ ◦ Πa ◦ (P+ ◦ Πb ◦ P+ ◦ Πa)
l ◦ δ(y).

For l ≥ 0 introduce the functions

s2l+1(y) ≡ (P+ ◦ Πb ◦ P+ ◦ Πa)
l ◦ δ(y),

s2l+2(y) ≡ P+ ◦ Πa ◦ (P+ ◦ Πb ◦ P+ ◦ Πa)
l ◦ δ(y).

Obviously,
h(−y) v0(x2l+1 − 0, y) = P− ◦ Πa ◦ s2l+1(y),

h(−y) v0(x2l+2 − 0, y) = P− ◦ Πb ◦ s2l+2(y).

Let us show that for m ≥ 2

sm(y) = P+ ◦ g(xm−1, y) + s′m(y), (73)

where s′m is a function with finite L2-norm. Proof this by induction. The
base (i.e. the case m = 2) is obvious. Then,

sm+1(y) = P+ ◦ Π ◦ sm(y)− P+ ◦ Π ◦ P− ◦ g(xm−1, y),

where Π stands for Πa or Πb. The first term in the right has finite norm
due to the properties of the operators Π and P+. The second term can be
computed explicitly. Its norm is finite. Also, this reasoning gives estimation
of growth for s′m. Then,

h(−y) v0(xm − 0, y) = P− ◦ Π ◦ sm(y) + P− ◦ Π ◦ P+ ◦ g(xm−1, y).

The first term in the right has the norm not greater than ∥sm(y)∥2. The
second term can be computed, and its norm is finite. �

Physically, the terms Ṽm,m and Ṽm+1,m are different from other ones. The
difference is that all other terms are wave fields diffracted at least once, while
the terms Ṽm,m and Ṽm+1,m contain rays traveling directly from the source to
the observation point.

Let us make an important notice. Continue (69) to p = 0 by continuity.
According to (62) this gives

V0(+∞) = 1, V1(+∞) = 1. (74)

These identities can be taken as initial conditions for the spectral equation
(48).
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10 Concluding remarks

We propose a new approach to solving of problems of diffraction by a periodic
system of branch points of the type described above. The following steps are
performed within this approach.

1. OE-equation (67) with the right-hand side (68) is solved (for example,
numerically) and matrix function C(θ) is found.

2. Coefficient C(θ) found on the previous step is substituted into the spec-
tral equation (48). The spectral equation is solved with boundary condition
(74). Functions V0(θ), V1(θ) are found.

3. Functions V0(θ), V1(θ) are substituted into the embedding formula
(36), and the scattering coefficients Rn are found.

Further investigations related to the topic may include development of
numerical methods to solve the OE-equation, studies of the asymptotical
and analytical properties of the OE-equation.

The work is supported by the grants of Russian Federation Government
11.G34.31.0066, “Scientific schools” grant 2631.2012.2, RFBR grant 12-02-
00114. The author is grateful to the participants of the seminar on Wave
diffraction and propagation having place in PDMI RAS institute for lively
discussion of the work and valuable notes carefully taken into account by the
author.

Appendix. The simplest problem for the parabolic

equation on a branched surface

Let the surface have structure shown in Fig. 4. The surface is composed of
two sheets cut along the half-lines y < 0, x = 0. The shores of the cuts
are attached to each other as it is shown in the figure. One of the sheets
will be called main, and another one will be called auxiliary. Everywhere on
the surface except the point (0, 0) the parabolic equation (4) is valid. The
incident field having form (9) falls from infinity along the main sheet. There
is no incident field on the auxiliary sheet, therefore the total field is equal to
zero for x < 0 on the auxiliary sheet. Thus, the field on the main and on the
auxiliary sheet (um and ua, respectively) are as follows for x < 0:

um = uin, ua = 0. (75)
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Figure 4: Two-sheet branched surface for the model problem

Compute the field to the right of the branch point, i.e. for x > 0. On the
main sheet for x = +0 the field has form

um(+0, y) =

{
uin(0, y), y > 0,
0, y < 0

(76)

This formula takes into account that for y > 0 the field is a continuation
from the main sheet, and for y < 0 it is the continuation from the auxiliary
sheet. The field on the auxiliary sheet on the line x = +0 has form

ua(+0, y) =

{
0, y > 0,
uin(0, y), y < 0.

(77)

Now we can use formula (5) for finding the fields for x > 0:

um(x, y) =
e−iπ/4

√
π

exp

{
−ik

(
θ2in
2
x+ θiny

)}
F

(
−(y + θinx)

√
k

2x

)
, (78)

ua(x, y) = exp

{
−ik

(
θ2in
2
x+ θiny

)}[
1− e−iπ/4

√
π

F

(
−(y + θinx)

√
k

2x

)]
,

(79)

F (ξ) =

∞∫
ξ

eiτ
2

dτ.
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The expressions obtained above are the standard representations for the wave
field scattered at small angles.

The problem considered here was studied on a two-sheet surface, however
the field on the main sheet can be found without solving the problem on the
auxiliary sheet. For these, one can consider the field only on the main sheet
cut along the half-line y < 0, x = 0 with condition (7) on the right shore.
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