Методы машинного обучения

Методы машинного обучения

Тематика курса относится к области обработки данных алгоритмами, содержание которых адаптивно по отношению к наборам обрабатываемых ими данных. В последнее десятилетие данное направление получило существенное развитие, поскольку, с одной стороны, появились мощные и относительно недорогие вычислительные системы, а с другой – стали доступны большие массивы данных, на которых можно проводить тренировку. В результате удалось добиться серьезных успехов в задачах, связанных, прежде всего, с распознаванием изображений, что вызвало взрывной интерес к теме искусственного интеллекта, рост числа специалистов в этой области и попытки применения разработанных методов в самых разных областях науки и техники, где также был достигнут существенный прогресс.

В настоящее время методы машинного обучения нашли свое применение в торговле, логистике, рекламе, недвижимости, экономике и финансах, бухучете, сельском хозяйстве, биотехнологиях, строительстве, образовании, здравоохранении и других областях. В рамках курса планируется дать слушателям представление о разнообразных методах машинного обучения и степени их применимости для задач разного рода, а также показать возможности практического применения предлагаемых методов.

Разработка курса поддержана грантом Фонда развития теоретической физики и математики "БАЗИС".

Презентации курса доступны по ссылке.